Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Peri-modiolar electrode arrays: a comparison of electrode position n the human temporal bone
    Shepherd, R. K. ; Treaba, C. G. ; Cohen, L. ; Pyman, B. ; Huigen, J. ; Xu, J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    This paper describes a radiologic evaluation of three types of peri-modiolar arrays, comparing their trajectory within the scala tympani with a standard Mini-22 electrode. All peri-modiolar arrays were found to lie closer to the modiolus for much of their insertion length compared with the standard array. While one design showed evidence for the potential of increased insertion trauma, two designs produced satisfactory results. Although further electrode development, temporal bone and histopathologic studies arE required, it would appear that the benefits of peri-modiolar electrode arrays will be realised clinically.
  • Item
    Thumbnail Image
    Increased survival of auditory neurones treated with LIF
    Marzella, P. L. ; Clark, Graeme M. ; Shepherd, R. K. ; Bartlett, P. F. ; Kilpatrick, T. J. ( 1997)
    Degeneration of spiral ganglion cells (SOC) is one of the most common correlates of sensorineural hearing loss (1). Several lines of evidence show that the continued supply of growth factors is responsible for maintaining auditory neurone integrity (2). In the present study SOC cultures were used as a model of auditory innervation to test the ability of the cytokine leukaemia inhibitory factor (LIF) and the neurotrophin NT -3 to promote neuronal survival individually or in combination. The data demonstrate that LIF promotes the survival of SOC in a concentration-dependent manner, with a significant increase in neuronal survival at concentrations as low as 0.1 ng/ml compared to untreated wells ( p< 0.05), and a maximum neuronal survival at 10 ng/ml. In addition, when used in combination LIF and NT-3 were more effective in promoting neuronal survival than either factor individually, with a significant increase in survival at concentrations of 0.1ng mI[to the power of]-1/0.1 ng mI[to the power of]-1 (LIF/NT-3). To our knowledge this is the first study reporting that LIF has trophic activity on SOC. Moreover, the data suggest that a combination of several growth factors may provide a better approach when developing pharmacological therapies for auditory neuron repair.
  • Item
    Thumbnail Image
    Electrical stimulus induced changes in excitability of the auditory nerve
    Huang, C. O. ; Shepherd, Robert K. ; Seligman, P. M. ; Clark, Graeme M. ( 1997)
    High rate electrical stimulation of the auditory nerve using stimulus intensities well above the clinical limits can induce a significant reduction in the excitability of the auditory nerve as measured by a decrement in the amplitude of the electrically evoked auditory brainstem response (EABR). Two potential mechanisms may be associated with this stimulus induced reduction in activity: 1) stimulus induced prolonged neuronal hyperactivity; and 2) the generation of adverse electrochemical productions from the electrode surface. The purpose of the present study was to assess the extent to which adverse electrochemical damage contributes to the stimulus induced reduction in auditory nerve excitability. Twenty-six adult guinea pigs anaesthetized with ketamine (40 mg/kg i.p.) and xylazine (4 mglkg i.p.), were bilaterally implanted and unilaterally stimulated for two hours using a stimulus intensity of two or four times EABR threshold. Stimulus rates of 200, 400, or 1000 pulses/s (pps) were delivered via a standard platinum scala tympani electrode or large surface area ("high Q") platinum electrode.