Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens
    Araki, Susumu ; Kawano, Atsushi ; Seldon, H. Lee ; Shepherd, Robert K. ; Funasaka, Sotaro ; Clark, Graeme M. ( 1998)
    We have studied spiral ganglion cell (SGC) survival and soma size in neonatally pharmacologically deafened kittens. They were implanted with a four-electrode array in the left cochlea at 100 to 180 or more days of age. Eight animals were chronically stimulated approximately 1000 hours over approximately 60 days with charge-balanced, biphasic current pulses; three were unstimulated controls. Using three-dimensional computer-aided reconstruction of the cochlea, the SGC position and cross-sectional area were stored. SGC position was mapped to the organ of Corti by perpendicular projections, starting from the basal end. The basal region of the cochlea was divided into three 4-mm segments. SGC survival (number per 0.1 mm of the length of the organ of Corti) and soma size for stimulated cochleae were compared statistically with implanted but unstimulated cochleae. There was no evidence of an effect of electrical stimulation on SGC survival under this protocol and with this duration. On the other hand, the cell size on the stimulated side was significantly larger than the control side in the middle segment (4 to 8 mm from the basal end). SGCs undergo a reduction in size after prolonged auditory deprivation; however, these changes may be partially moderated after chronic intracochlear electrical stimulation.
  • Item
    Thumbnail Image
    The histopathological effects of chronic electrical stimulation of the cat cochlea
    Shepherd, R. K. ; Clark, Graeme M. ; Black, R. C. ; Patrick, J. F. (Cambridge University Press, 1983)
    The success of a cochlear implant depends on stimulating an adequate number of viable spiral ganglion cells. The effect of chronic electrical stimulation on ganglion cells is therefore an important consideration when assessing the effectiveness and safety of such a device. The histopathological assessment of chronic unstimulated intracochlear electrodes is now well documented (Simmons, 1967; Clark, 1973; Clark et al, 1975; Schindler and Merzenich, 1974; Schindler, 1976; Schindler et al, 1977; Sutton et al, 1980). These experimental studies have used a variety of electrode designs, materials and surgical techniques. However, all have shown that chronic implantation has little effect on the peripheral nerves and the spiral ganglion cells adjacent to an implant, provided the insertion procedure is free of trauma and infection.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve in cats: physiological and histopathological results
    Shepherd, R. K. ; Clark, Graeme M. ; Black, R. C. ( 1983)
    The ability of spiral ganglion cells to survive long-term electrical stimulation is a precondition for the success of cochlear prostheses. In this study 10 cats were implanted bilaterally with bipolar scala tympani electrodes and stimulated for periods of up to 2029 hours using charge balanced biphasic current pulses. The status of the auditory nerve was monitored periodically by recording electrically evoked auditory brainstem responses. At the conclusion of the stimulation program, spiral ganglion cell survival was assessed for stimulated and control cochleas; comparison of the two groups showed no statistically significant difference. The results of this study indicate that long-term intracochlear electrical stimulation using carefully controlled biphasic pulses does not adversely affect the spiral ganglion cell population.
  • Item
    Thumbnail Image
    Investigation of curved intracochlear electrode arrays [Abstract]
    Xu, Shi-Ang ; Xu, J. ; Seldon, H Lee. ; Shepherd, R. K. ; Clark, G. M. ( 1992)
    It has been demonstrated that the Melbourne/Cochlear multi-channel cochlear implant is safe and effective for use in profoundly-totally deaf patients. Recent studies have highlighted the importance of deaf insertion and placing the electrodes closer to the spiral ganglion neurons. In order to improve the electrode insertion depth and proximity to the modiolus, we have investigated curved electrode arrays. Prototypes of such arrays and their accessory inserter have been made. Trial insertions were performed on skeletonized cochleae of human temporal bones. The preliminary results showed that, when compared with conventional straight electrode arrays, the curved arrays could be inserted deeper and located closer to the modiolus. These findings indicate that the curved --.~ electrodes currently under investigation should result in a reduction in stimulus threshold and improve pitch perception and may also result in the use of more channels of stimulation.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve in cats
    Shepherd, R. K. ; Clark, Graeme M. ; Black, R. C. ; Patrick, J. F. ( 1982)
    One requirement for the success of a cochlear hearing prosthesis is that long-term electrical stimulation must not have adverse effects on the residual spiral ganglion cell population. Electrochemically 'safe' stimulation regimes have been defined for the cortex (Brummer &Turner, 1977). However, few investigators have examined the effects of long-term intracochlear electrical stimulation. Walsh et al (1980), stimulating with current densities greater than the 'safe' limits defined by Brummer &Turner (1977), for periods of up to 800 hours at current levels of 4.0-8.0 mA, recorded slight local neural degeneration adjacent to the electrodes.