Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using open-set CID sentences
    Clark, Graeme M. ; Tong, Yit Chow ; Martin, Lois F. A. ( 1981)
    A multiple-channel cochlear implant and speech processor have been used in two postlingually deaf adult patients with a total hearing loss, to enable them to perceive varying degrees of running speech. The results have been confirmed with open-set CID everyday sentence tests. Using the implant alone, the patients obtained 8% and 14% scores with pre-recorded material, and 34% and 36% scores for "live" presentations. This was equivalent to the perception of 35% of connected discourse. When the implant was used in conjunction with lipreading, improvements of 188% and 386% were obtained over lipreading alone, and the scores were 68% and 98% which were equivalent to the perception of 60% and 95% of connected discourse.
  • Item
    Thumbnail Image
    The surgery for multiple-electrode cochlear implantations
    Clark, Graeme M. ; Pyman, Brian C. ; Bailey, Quentin R. (Cambridge University Press, 1979)
    The multiple-electrode hearing prosthesis designed in the Departments of Otolaryngology and Electrical Engineering (UMDOLEE) at the University of Melbourne (Clark et al., 1977) has been miniaturized with hybrid circuitry so that, if design changes are necessary as a result of initial patient testing, they can be made at minimal cost. This results, however, in increased package dimensions which makes its placement and the design of the surgery more critical. This problem is increased by the fact that we have considered it important to be able to remove the package and replace it with another without disturbing the implanted electrode array, should the first receiver-stimulator fail or an improved design become available. This has meant the design of a special connector (Patrick, 1977; Clark et al., 1978) which adds to the dimensions of the implanted unit. In addition the placement of the coils for transmitting power and information has to be considered. Not only is it desirable to site the coils at a convenient location behind the ear to facilitate the placement and wearing of the external transmitter, but there should also be no relative movement between the coils and the electronic package. These design considerations have led to the sitting of the coils on top of the hermetically-sealed box, and further increased the height of the package. The dimensions of the package shown in Fig. 1 are length 42 mm, width 32 mm, height of connector 8.5 mm, height of receiver-stimulato unit 13 mm. The surgical considerations discussed are the result of a number of temporal bone and cadaver dissections, and the surgical implantation at The Royal Victorian Eye and Ear Hospital of the UMDOLEE unit in a specially-selected patient.
  • Item
    Thumbnail Image
    A cochlear implant round window electrode array
    Clark, Graeme M. ; Patrick, J. F. ; Bailey, Q. (Cambridge University Press, 1979)
    One important aspect of cochlear implantation is the placement of a multiple-electrode array close to residual auditory nerve fibres so that discrete groups of fibres can be stimulated electrically according to the place basis of frequency coding. Furthermore, in patients who are postlingually deaf these electrodes should lie in relation to the nerve fibres which are responsible for transmitting the frequencies which are important in speech comprehension, viz. 300-3,000 Hz. The method of electrode insertion should also ensure that there is no significant damage to auditory nerve fibres.
  • Item
    Thumbnail Image
    A multiple-electrode cochlear implant
    Clark, Graeme M. ; Tong, Y. C. ; Bailey, Q. R. ; Black, R. C. ; Martin, L. F. ; Millar, J. B. ; O'Loughlin B. J. ; Patrick, J. F. ; Pyman, B. C. ( 1978)
    Interest in artificially stimulating the auditory nerve electrically for sensori-neural deafness was first sparked off by Volta in the 18th century. Count Volta, who was the first to develop the electric battery, connected up a number of his batteries to two metal rods which he inserted into his ears. Having placed the rods in his ears he pressed the switch and received "une secousse dans la tete" and perceived a noise like "the boiling of thick soup".
  • Item
    Thumbnail Image
    Design criteria of a multiple-electrode cochlear implant hearing prosthesis
    Clark, Graeme M. ; Black, R. C. ; Forster, I. C. ; Patrick, J. F. ; Tong, Y. C. ( 1978)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Recent developments with the Nucleus 22-electrode cochlear implant: a new two formant speech coding strategy and its performance in background noise
    Franz, Burkhard K-H. G. ; Dowell, Richard C. ; Clark, Graeme M. ; Seligman, Peter M. ; Patrick, James F. ( 1987)
    A clinical evaluation of speech processing strategies for the Nucleus 22-electrode cochlear implant showed improvements in understanding speech using the new F0F1F2 speech coding strategy instead of the F0F2 strategy. Significant improvement in closed-set speech recognition in the presence of background noise was an additional advantage of the new speech processing strategy.
  • Item
    Thumbnail Image
    Evaluation of a two-formant speech-processing strategy for a multichannel cochlear prosthesis
    Dowell, R. C. ; Seligman, P. M. ; Blamey, P. J. ; Clark, Graeme M. ( 1987)
    Initial results with the two-formant speech-processing strategy (F0FIF2) confirm the advantage of a multichannel cochlear prosthesis capable of stimulating at different sites within the cochlea. The successful presentation of two spectral components by varying the place of stimulation leads to the possibility of presenting further spectral information in this manner. Because virtually all multichannel implant patients demonstrate good "place" (electrode site) discrimination, these more refined coding strategies should lead to benefits for the majority of implantees. Already, with the F0FIF2 strategy, we have a system that appears to provide some effective auditory-alone communication ability for the average patient.
  • Item
    Thumbnail Image
    A multiple-electrode intracochlear implant for children
    Clark, Graeme M. ; Blamey, Peter J. ; Busby, Peter A. ; Dowell, Richard C. ; Franz, Burkhard K-H. ; Musgrave, Gaye Nicholls ; Nienhuys, Terry G. ; Pyman, Brian C. ; Roberts, Susan A. ; Tong, Yit C. ; Webb, Robert L. ; Kuzma, Januz A. ; Money, David K. ; Patrick, James F. ; Seligman, Peter M. ( 1987)
    A multiple-electrode intracochlear implant that provides 21 stimulus channels has been designed for use in young children. It is smaller than the adult version and has magnets to facilitate the attachment of the headset. It has been implanted in two children aged 5 and 10 years. The two children both lost hearing in their third year, when they were still learning language. Following implantation, it was possible to determine threshold and comfortable listening levels for each electrode pair. This was facilitated in the younger child by prior training in scaling visual and electrotactile stimuli. Both children are regular users of the implant, and a training and assessment program has been commenced.
  • Item
    Thumbnail Image
    Absolute identification of electric pulse rates and electrode positions by cochlear implant patients
    Tong, Y. C. ; Clark, Graeme M. ( 1985)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Banded intracochlear electrode array: evaluation of insertion trauma in human temporal bones
    Shepherd, R. K. ; Clark, Graeme M. ; Pyman, B. C. ; Webb, R. L. ( 1985)
    A banded free-fit scala tympani array was inserted into a basal turn of nine human cochleas to evaluate the trauma produced by the procedure. These nine cochleas, together with five nonimplanted controls, were serially sectioned and examined microscopically for damage to the membranous labyrinth, in particular the spiral ligament, the basilar and Reissner’s membranes, the stria vascularis, and the osseous spiral lamina. The severity and location of any trauma along the cochlear spiral were recorded. The results indicate that the insertion of the banded scala tympani array resulted in minimal mechanical damage, occurring primarily to a localized region of the spiral ligament. This would not result in significant neural degeneration, and therefore would not compromise the efficacy of multichannel cochlear prosthesis.