Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    Thumbnail Image
    Spatial representation of the cochlea within the inferior colliculus of neonatally deafened kittens following chronic electrical stimulation of the auditory nerve [Abstract]
    Shepherd, R. K. ; Martin, R. L. ; Brown, M. ; Clark, Graeme M. ( 1995)
    The orderly tonotopic representation of the cochlea is accurately reproduced within the central auditory system of normal hearing animals. Any degradation of this representation as a result of a neonatal hearing loss or chronic electrical stimulation during development could have important implications for the use of multichannel cochlear implants in young children. In the present study we have used 2-deoxyglucose autoradiography (2-00) to examine the topographic representation of the cochlea within the inferior colliculus (IC) of neonatally deafened kittens following periods of chronic intracochlear electrical stimulation.
  • Item
    Thumbnail Image
    Decrement in auditory nerve function following acute high rate stimulation in guinea pigs [Abstract]
    Tykocinski, M. ; Shepherd, R. K. ; Clark, Graeme M. ( 1995)
    Cochlear implants have been shown to successfully provide profoundly deaf patients with auditory cues for speech discrimination. Psychophysical studies suggested that speech processing strategies based on stimulus rates of up to 1000 pulses per second (pps) may lead to an improvement in speech perception, due to a better representation of the rapid variations in the amplitude of speech. However, "neural fatigue" has been known to occur following brief periods of electrical stimulation at rates high enough to ensure that stimuli occur within the neurons relative refractory period, and has been shown to depend on stimulus duration and rate of the evoked neural activity. Prolonged electrical stimulation at these high stimulus rates could, therefore, have an adverse effect on the neurons metabolism and result in cellular energy depletion.
  • Item
    Thumbnail Image
    High rate electrical stimulation of the auditory nerve: physiological and pathological results [Abstract]
    Shepherd, Robert K. ; XU, JIN ; TYKOCINSKI, MICHAEL ; Millard, Rodney, E. ; Clark, Graeme M. ( 1995)
    Previous experimental studies have shown that chronic electrical stimulation of the auditory nerve using charge balanced biphasic current pulses at rates of up to 500 pulses per second (pps) do not adversely affect the adjacent spiral ganglion population. More recently, a number of clinical trials have indicated that speech processing strategies based on high pulse rates (1000 pps and more), can further improve speech perception. In this paper we summarize our results following acute and chronic electrical stimulation of the auditory nerve using high pulse rates.
  • Item
    Thumbnail Image
    The auditory cortex and auditory deprivation: experience with cochlear implants in the congenitally deaf [Abstract]
    Shepherd, R. K. ; Hartmann, R. ; Heid, S. ; Klinke, R. ; Blamey, P. J. ; Dowell, R. C. ; Clarke, Graeme M. ( 1995)
    The primary auditory cortex (AI) exhibits a topographic representation of the organ of Corti in normal hearing animals. Plasticity studies have shown that this orderly representation of frequency can be modified following a restricted hearing loss or by behavioural trainingl,2. Little is known, however, of the effects of a profound hearing loss on AI, although a number of early studies have suggested an enhancement of activity from other modalities3. Knowledge of the functional status of the central auditory pathway in the profoundly deaf, and the ability of these structures to undergo reorganization particularly following long periods of auditory deprivation - are important issues for the clinical management of cochlear implant patients. In this paper we review our recent clinical and experimental experience with cochlear implants in the congenitally deaf.
  • Item
    Thumbnail Image
    Results of multichannel cochlear implantation in very young children [Abstract]
    Galvin, K. ; Clark, Graeme M. ; DETTMAN, SHANI ; Dowell, Richard C. ; Barker, E. J. ; Rance, G. ; Hollow, R. ; Cowan, R. ( 1995)
    Most researchers and clinicians working in the cochlear implant field have assumed that profoundly deaf children will have a better prognosis in terms of speech perception, speech production and language development, implanted at as young an age as possible. However, it has been difficult to gather direct evidence for this hypothesis due to the problems in assessing children under the age of five years with formal tests.
  • Item
    Thumbnail Image
    Speech perception benefits for children using the Speak speech processing strategy in quiet and noise [Abstract]
    Whitford, L.A. ; Dowell, R.C. ; Brown, C. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Shaw, S. ; Everingham, C. ( 1995)
    The Speak speech processing strategy, based on the Spectral Maxima Speech Processor (SMSP) developed at the University of Melbourne, has now been implemented in the Spectra 22 speech processor developed by Cochlear Pty Limited, and clinical trials of both patients changing from the previous Multipeak strategy to Speak and patients starting up with Speak have been conducted. Results in adult patients changing to Speak have shown significant improvements in speech perception in quiet and particularly in background noise as compared with Multipeak.
  • Item
    Thumbnail Image
    Speech perception benefits for implanted children with preoperative residual hearing [Abstract]
    Hollow, R. ; Rance, G. ; Dowell, R.C. ; Pyman, B. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Dettman, S. ( 1995)
    Since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, there has been rapid expansion in the number of implanted children world-wide. Improved surgical technique and experience in paediatric assessment and management have contributed to a trend to implant very young children. At the same time there has also been continuing development of improved speech processing strategies resulting in greater speech perception benefits.
  • Item
    Thumbnail Image
    Evaluation of leadwire fixation for paediatric cochlear implants [Abstract]
    Xu, S. A. ; Shepherd, R. K. ; Clark, Graeme M. ( 1994)
    A paediatric cochlear implant should include a leadwire system that can readily expand in the presence of tissue adhesions and can be effectively fixed at a site close to the cochlea to ensure that the electrode array is not displaced during skull growth. In this study, leadwires were implanted in six young animals for a period of five months. During explantation, the mean force � standard deviation required to expand individual leadwire was found to be 12.5 � 5.0g. In order to evaluate the efficacy of leadwire fixation techniques, four fixation procedures were initially developed in human temporal bones and subsequently used to fix leadwires implanted in the temporal bones of eight animals for a period of four months. Leadwires were fixed by platinum wires at the fossa incudis or by platinum wires with a titanium barbed nail at the mastoid. The biomechanical evaluation revealed that the forces required to displace the leadwire from fixation points were 70.6 � 33.5g. Significantly, the forces required to withdraw a chronically implanted electrode array from an animal cochlea were 1.5 � 0.4g. The present results highlight the importance of an effective leadwire fixation technique for paediatric cochlear implants, particularly in preventing the displacement of an electrode array from the cochlea during skull growth.
  • Item
    Thumbnail Image
    "Cochlear View" and its application in cochlear implant patients [Abstract]
    Xu, J. ; Xu, S. A. ; Clark, Graeme M. ; Marsh, M. A. ( 1994)
    Recent advances in multichannel intracochlear implantation have generated interests in correlating individual stimulating electrodes to pitch perception. An appropriate radiographic technique is required to precisely document the location of the implanted intracochlear electrode array. Anatomical studies, including the measurements of the temporal bone using high-resolution CT films and 3D reconstruction from the petrous bone sections, were conducted to define the spatial position of cochlea in the skull. Thus, a "Cochlear View" was designed and introduced for postoperative radiological evaluation of multichannel intracochlear implantation. In this paper, a detailed radiographic method and radiological interpretation of the "Cochlear View" are described. A plain radiograph of the "Cochlear View" was taken of 120 patients who had received the Nucleus multichannel implant. Studies have shown that a plain radiograph of the "Cochlear View" provides sufficient information to correctly evaluate the results of implantation, including the insertion depth and position of individual electrodes. It plays an important role in guiding the management of frequency mapping and acts as a useful reference for further research purposes.
  • Item
    Thumbnail Image
    Decrement in auditory nerve function following acute high rate stimulation in guinea pigs [Abstract]
    Tykocinski, M. ; Shepherd, R. K. ; Clark, Graeme M. ( 1995)
    Cochlear implants have been shown to successfully provide profoundly deaf patients with auditory cues for speech discrimination. Psychophysical studies suggested that speech processing strategies based on stimulus rates of up to 1000 pulses per second (pps) may lead to an improvement in speech perception, due to a better representation of the rapid variations in the amplitude of speech. However, "neural fatigue" has been known to occur following brief periods of electrical stimulation at rates high enough to ensure that stimuli occur within the neurons relative refractory period, and has been shown to depend on stimulus duration and rate of the evoked neural activity. Prolonged electrical stimulation at these high stimulus rates could, therefore, have an adverse effect on the neurons metabolism and result in cellular energy depletion.