Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    A clinical report on receptive vocabulary skills in cochlear implant users
    Dawson, P. W. ; Blamey, P. J. ; Dettman, S. J. ; Barker, E. J. ; Clark, Graeme M. ( 1995)
    Objective: The aim was to measure the rate of vocabulary acquisition for cochlear implant users and compare the pre- and postoperative rates with published data for other groups with normal or impaired hearing. The hypothesis was that the postoperative rate would be greater than the preoperative rate. Design: The Peabody Picture Vocabulary Test (PPVT) was administered to 32 children, adolescents, and prelinguistically deafened adults implanted with the 22-electrode cochlear implant. Age at implantation ranged from 2 y r 6 mo to 20 yr and implant use ranged from 6 mo to 7 yr 8 mo. Results: The group mean postoperative performance at various postoperative intervals was significantly higher than mean preoperative performance. Single-subject data indicated statistically significant gains over time on this test for 13 of the subjects. The mean postoperative rate of vocabulary acquisition of 1.06 times the rate for normally hearing children was significantly greater than the mean preoperative rate of 0.43. Conclusions: These rates of improvement were in accord with previous reports on smaller numbers of implant users, but could not be attributed unambiguously to use of the implant because no control group was used for this clinical work. Variables such as age at implantation, duration of profound deafness, communication mode, and speech perception skill failed to significantly predict rate of improvement on the PPVT.
  • Item
    Thumbnail Image
    A clinical report on speech production of cochlear implant users
    Dawson, P. W. ; Blamey, P. J. ; Dettman, S. J. ; Rowland, L. C. ; Barker, E. J. ; Tobey, E. A. ; Busby, P. A. ; Cowan, R. C. ( 1995)
    Objective: The aim was to assess articulation and speech intelligibility over time in a group of cochlear implant users implanted at 8 yr or over. The hypothesis was that the postoperative speech production performance would be greater than the preoperative performance. Design: A test of intelligibility using sentences and an articulation test measuring non-imitative elicited speech were administered to 11 and 10 subjects, respectively, who were implanted with the 22-electrode cochlear implant. Nine subjects received both tests. Age at implantation ranged from 8 yr to 20 yr and implant use ranged from 1 yr to 4 yr 5 mo. Results: For both the intelligibility and articulation tests roughly half of the subjects showed significant improvements over time and group mean postoperative performance significantly exceeded preoperative performance. Improvements occurred for front, middle, and back consonants; for stops, fricatives, and glides and for voiceless and voiced consonants. Conclusions: Despite being deprived of acoustic speech information for many childhood years, roughly half of the patients assessed showed significant gains in speech intelligibility and articulation postimplantation. The lack of a control group of non-implanted patients means that we cannot separate out the influence of the implant on speech production from other influences such as training and tactile-kinaesthetic feedback.
  • Item
    Thumbnail Image
    Cochlear histopatholgic characteristics following long-term implantation: safety studies in the young monkey
    Burton, Martin J. ; Shepherd, Robert K. ; Clark, Graeme M. ( 1996)
    Objective: To evaluate the safety of cochlear implantation in children 2 years of age or younger using a non-human primate model.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Chronic middle ear disease and cochlear implantation
    Donnelly, M. J. ; Pyman, B. C. ; Clark, Graeme M. ( 1995)
    Profound or total hearing loss can occur in the setting of chronic suppurative otitis media (CSOM), either coincidentally or secondary to the disease process. Obviously, inserting a foreign body through a potentially infected field into a space that communicates intracranially presents a challenging management problem. This paper presents the experience from the Melbourne Cochlear Implant Clinic (CIC) in implanting patients with bilateral CSOM. This is certainly not a common problem, as there have been only 3 cases from 121 implanted adults. However, we feel that it is an important issue with potentially devastating consequences. In addition, there are many countries in which bilateral CSOM is a more common problem and cause of profound or total hearing loss.
  • Item
    Thumbnail Image
    Investigations on a curved intracochlear array
    Donnelly, M. J. ; Cohen, L. T. ; Xu, J. ; Xu, S-A. ; Clark, Graeme M. ( 1995)
    The electrode array of a multiple-channel cochlear implant lies against the outer wall of the scala tympani. From this position electrical current spreads to excite residual neural elements, particularly spiral ganglion cells within the modiolus. It is not clear whether the spread of current from the outer wall is optimal for multiple-channel speech processing, but placement closer to the target nerves could result in lower thresholds. This could have benefits through the use of shorter pulse durations and extended battery life. Computer modeling studies and animal experiments have suggested that for localized current the optimal electrode position is adjacent to the modiolus. At the University of Melbourne it was felt that an electrode with a curve matching the internal cochlear spiral would remain close to the modiolus after insertion. A curved electrode was developed and an inserting tool was designed and produced (Treaba et al, this suppl, this section). Preliminary studies suggested that the electrode array did indeed remain close to the modiolus. Before further development of this type of electrode design, it was necessary to determine whether modifications to the surgical technique for its insertion were required. It was also important to ensure that the curved electrode fabricated for clinical trial would lie closer to the modiolus than to the outer wall of the scala tympani. This study was undertaken to examine these issues.
  • Item
    Thumbnail Image
    Initial investigation of the efficacy and biosafety of sodium hyaluronate (healon) as an aid to electrode array insertion
    Donnelly, M. J. ; Cohen, L. T. ; Clark, Graeme M. ( 1995)
    Stimulation of residual neural elements by electrodes inserted into the cochlea to produce the perception of speech and environmental sounds in profoundly deaf people is a fundamental aim of cochlear implantation. The multiple-channel cochlear implant utilizes the tonotopic arrangement of the organ of Corti to also achieve place pitch perception by stimulating different electrode bands. It may be possible to improve the range of pitches perceived by present cochlear implant patients by inserting the electrode array more deeply. To help achieve this, investigators have used sodium hyaluronate as a lubricant for electrode insertions. 1 It was felt deeper insertions were produced with sodium hyaluronate. Before introducing this substance as part of the surgical protocol for the Melbourne Cochlear Implant Clinic, it was decided to investigate its efficacy in aiding deeper insertions of the electrode. In addition, it was also necessary to determine if sodium hyaluronate, in conjunction with cochlear implantation, had adverse effects on the inner ear. This study was undertaken to address these issues.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Speech perception in children using the advanced Speak speech-processing strategy
    Cowan, R. S. C. ; Brown, C. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Barker, E. J. ; Shaw, S. ; King, A. ; Skok, M. ; Seligman, P. M. ; Dowell, R. C. ; Everingham, C. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1995)
    The Speak speech-processing strategy, developed by the University of Melbourne and commercialized by Cochlear Pty Limited for use in the new Spectra 22 speech processor, has been shown to provide improved speech perception for adults in both quiet and noisy situations. The present study evaluated the ability of children experienced in the use of the Multipeak (Mpeak) speech-processing strategy (implemented in the Nucleus Minisystem-22 cochlear implant) to adapt to and benefit from the advanced Speak speech-processing strategy (implemented in the Nucleus Spectra 22 speech processor). Twelve children were assessed using Mpeak and Speak over a period of 8 months. All of the children had over 1 year's previous experience with Mpeak, and all were able to score significantly on open-set word and sentence tests using the cochlear implant alone. Children were assessed with both live-voice and recorded speech materials, including Consonant-Nucleus-Consonant monosyllabic words and Speech Intelligibility Test sentences. Assessments were made in both quiet and in noise. Assessments were made at 3-week intervals to investigate the ability of the children to adapt to the new speech-processing strategy. For most of the children, a significant advantage was evident when using the Speak strategy as compared with Mpeak. For 4 of the children, there was no decrement in speech perception scores immediately following fitting with Speak. Eight of the children showed a small (10% to 20%) decrement in speech perception scores for between 3 and 6 weeks following the changeover to Speak. After 24 weeks' experience with Speak, 11 of the children had shown a steady increase in speech perception scores, with final Speak scores higher than for Mpeak. Only 1 child showed a significant decrement in speech perception with Speak, which did not recover to original Mpeak levels.
  • Item
    Thumbnail Image
    Improved electrotactile speech processor: Tickle Talker
    Cowan, R. S. C. ; Galvin, K. L. ; Sarant, J. Z. ; Millard, R. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    The Tickle Talker, an eight-channel electrotactile speech processor, has been developed from continuing research at the University of Melbourne. 'The development of the device has focused on production of reliable speech-processing hardware, design of cosmetically and ergonometrically acceptable electrode transducers, implementation of acute and chronic biomedical studies demonstrating device safety, design and testing of alternative speech-encoding strategies to provide benefit to speech perception and production, and design and testing of appropriate training methods for optimizing benefits. The Tickle Talker has been shown to provide benefits in supplementing lipreading or aided residual hearing for hearing-impaired adults and children. Improvements in speech processing have resulted in an increase in benefits to speech perception, and open the way for more flexible approaches to encoding speech input. Continuing development of the electrode circuitry has now produced a device that is robust and has an extended battery life. Safety studies have clearly demonstrated that there are no long-term contraindications to device use. The results suggest that the device has a role to play in rehabilitation programs for severely and profoundly hearing-impaired adults and children.