Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Intracellular responses of anteroventral cochlear nucleus neurones to intracochlear electrical stimulation in the rat [Abstract]
    Paolini, A. G. ; Clark, Graeme M. ( 1996)
    The anterior division of the ventral cochlear nucleus (AVCN) is the first relay station of the auditory pathway. Currently little is known about the intracellular physiological responses of neurones in the AVCN to electrical stimulation of the cochlea. We investigated the effect of cochlear electrical stimulation in the rat AVCN using in vivo intracellular recordings. Male rats were anaesthetised with urethane (1.3g/kg i.p), placed in a stereotaxic frame, the crania and dura removed and the cochlear nucleus exposed.
  • Item
    Thumbnail Image
    Electrophonically driven single unit responses of the anteroventral cochlear nucleus in cat [Abstract]
    Morrison, N. A. ; Brown, M. ; Clark, Graeme M. ( 1996)
    Electrical stimulation of the cochlea results in both direct and electrophonic excitation of auditory nerve fibres. It has been proposed that electrophonic stimulation results from the creation of a mechanical disturbance on the basilar membrane which has properties similar those resulting from acoustic stimuli. Auditory nerve compound action potential (CAP) forward masking studies1 show the level of frequency specific electrophonic stimulation is highly correlated with the spectral energy of the electrical stimulus waveform. The level of spectral energy in pulsatile biphasic electrical stimuli decreases toward low frequencies suggesting the level of electrophonic stimulation will be diminished in the low frequency region of the cochlea.
  • Item
    Thumbnail Image
    The histological and physiological effects of the auditory brainstem prosthesis of the auditory pathway [Abstract]
    Lui, Xuguang ; McPhee, Greg. ; Seldon, H. Lee ; Clark, Graeme M. ( 1997)
    The cochlear implant can successfully rehabilitate the majority of profoundly deaf patients. However, some of them cannot benefit from the cochlear implant due to bilateral interruption of the auditory nerve, particularly from neurofibromatosis II. These patients can be stimulated directly with an auditory brainstem prosthesis on the cochlear nucleus. To examine the safety and the efficacy of this prosthesis, the cochlear nuclei of guinea pigs were implanted unilaterally with bipolar surface electrodes, and stimulated acutely using charge-balanced, biphasic current pulses at rates of 250, SOO or 1000 Hz and charge intensities of 1.8, 2.8, 3.5 or 7.1?C/phase/cm2.
  • Item
    Thumbnail Image
    Steady state evoked potentials: an objective measure of residual hearing in young cochlear implant candidates [Abstract]
    Rance, G. ; Rickards, F. W. ; Cohen, L. T. ; Marsh, M. ; Cousins, V. ; Clark, Graeme M. ( 1993)
    Precise determination of hearing thresholds in prospective cochlear implant candidates is essential. As the minimum age of implantation for youl1g children has been reduced, the use of objective measures of hearing has become an important part of their pre-operative evaluation. Steady-state evoked potentials are scalp potentials elicited in response to sinusoidally amplitude and/or frequency modulated tones. A system has been developed at The University of Melbourne which allows the presence: of such a response to be detected automatically thus permitting an objective. frequency specific estimate of hearing to be made in sleeping or awake subjects. This paper investigates the use of SSEPs in determining hearing thresholds in young profoundly deaf children. Responses in such patients are compared with those: obtained in neonates, and a group of sleeping adult subjects with varying degrees of sensori-neural hearing loss. Results indicate that the SSE? procedure is well suited as a measure assessing residual hearing in profoundly deaf children suitable for a cochlear implant in that it can provide an accurate estimate of auditory thresholds using frequency specific stimuli presented at high levels.
  • Item
    Thumbnail Image
    Electrical stimulation of the auditory nerve in deaf kittens: effects on the spiral ganglion [Abstract]
    Shepherd, R. K. ; Matsushima, J ; Clark, Graeme M. ( 1992)
    Cochlear pathology following the administration of ototoxic drugs results in a widespread and rapid loss of sensory hair cells followed by a gradual degeneration of auditory nerve fibres and their cell bodies, the spiral ganglion. Recently, two studies have described increased spiral ganglion cell survival in the cochleas of deafened animals following chronic electrical stimulation of the auditory nerve (Hartshorn et al., 1991; Leake et al., ]991). If electrical stimulation is shown to have a trophic effect on degenerating auditory nerve fibres, these findings will significantly influence the preoperative management of cochlear implant patients. The aim of the present study was to corroborate these earlier reports and to evaluate the general tissue response of deafened cochleae in young animals following chronic electrical stimulation.
  • Item
    Thumbnail Image
    Multichannel cochlear implants in children: an overview of experimental and clinical results at the University of Melbourne [Opening Lecture]
    Shepherd, R. K. ; Dowell, R. C. ; Xu, S-A. ; McDermott, H. J. ; McKay, C. M. ; Clark, Graeme M. ( 1992)
    During the last decade there has been great progress in the clinical management of profound, postlinguistically deafened adults through the use of multichannel cochlear implants. The device developed by The University of Melbourne in association with Cochlear Pty Ltd, electrically stimulates selective regions of the auditory nerve using an array of 22 platinum (Pt) electrodes located in the scala tympani. Its development followed basic experimental studies and the development and evaluation of a prototype device in the 1970's. Following safety studies and a successful clinical trial, the Melbourne/Cochlear multichannel implant was approved for use in adults by the United States Food and Drug Administration (FDA) in 1985. More than 3000 patients throughout the world have since been implanted with this device, many being able to understand a significant amount of unfamiliar, connected speech without lipreading Following miniaturization of the implant, it became suitable for use with children. In 1990, after additional biological safety and clinical investigations, the FDA approved the use of the Melbourne/Cochlear multichannel implant for profoundly deaf children above the age of two years. And in 1991, the device received the medical device implantation approval certificate from the Japanese Government. The present paper presents an overview of our recent biological safety studies and clinical experience in children, and discusses the likely future development of these devices.
  • Item
    Thumbnail Image
    Cochlear implantation in young children: studies on head growth, leadwire design and electrode fixation in the monkey model [Abstract]
    Burton, Martin J. ; Xu, J. ; Shepherd, R. K. ; Xu, S-A. ; Seldon, H. L. ; Franz, B. K-H. G. ; Clark, Graeme M. ( 1992)
    For the safety of cochlear implantation in children under two, the implant assembly must not adversely effect the tissue of compromise head growth. Furthermore, growth changes and tissue responses should not impair functioning of the device. Dummy receiver-stimulators, interconnect plugs and leadwire-lengthening systems have been implanted for periods of 40 months in the young monkey to most effectively model the implantation of the young human child. The results show that implanting a receiver-stimulator package has no effect on skull growth or brain tissue under the package. The system for fixing the electrode at the fossa includes proved effective. There was marked osteoneogenesis in the mastoid cavity and this also resulted in fixation of the leadwire outside the cochlea. This study provides evidence for the safety of cochlear implantation in young children.
  • Item
    Thumbnail Image
    Cochlear implantation in young children: long-term effects of implantation on the skull and underlying central nervous system tissues in a primate model [Abstract]
    Burton, Martin J. ; Shepherd, R. K. ; Xu, S-A. ; Clark, Graeme M. ( 1992)
    Recent independent studies reporting results obtained by profoundly deaf children implanted with the Melbourne 22-channel cochlear implant have provided further impetus for assessing the feasibility of implanting children under two. Studies in appropriate animal models must first establish the safety of this procedure.