Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Results for children and adolescents using the multichannel cochlear prosthesis [Abstract]
    Dowell, Richard C. ; Clark, Graeme M. ; Dettman, Shani J. ; Dawson, Pamela W. ( 1992)
    The first adolescent to use the 22-electrode cochlear prosthesis was Implanted In Melbourne in 1985 and the first child (less than 10 years), the following year. Since then, over 100 children have received the cochlear prosthesis in Australia and over 1200 worldwide. Detailed assessment of 200 children in the U.S.A., Australia and Germany lead to the market approval of the prosthesis by the U.S. Food and Drug Administration in July 1990. The analysis of results for these children has proven to be difficult due to the use of different tests in different places, the lack of appropriate assessment tools for young children, the wide range of performance, and the problems of cooperation for young children. Despite these problems, some trends are beginning to emerge in the speech perception results for implanted children. Children with a greater amount of auditory experience before becoming profoundly deaf tend to perform better, as do children with more experience with the cochlear prosthesis. Those with a greater number of electrodes in use also perform better, a result supported by adult studies. Although older prelinguistically deafened children do not perform as well as postlinguistically deafened adults, there appears to be little difference between results for pre-and post-linguistically deafened young children. These trends In speech perception results will be discussed in more detail.
  • Item
    Thumbnail Image
    The development of the Melbourne/Cochlear multiple-channel cochlear implant for profoundly deaf children
    Clark, Graeme M. ; Busby, Peter A. ; Dowell, Richard C. ; Dawson, Pamella W. ; Pyman, Brian C. ; Webb, Robert L. ; Staller, Steven J. ; Beiter, Anne L. ; Brimacombe, Judith A. ( 1992)
    In 1978-79, a speech processing strategy which extracted the voicing (FO) and second formant (F2) frequencies and presented these as rate and place of stimulation respectively to residual auditory nerve fibres was developed for the University of Melbourne's prototype multiple-channel receiver-stimulator (Clark et aI1977, Clark et a11978, Tong et aI1980). This speech processing strategy was shown to provide post linguistically deaf adults with some open-set speech comprehension using electrical stimulation alone, and considerable help when used in combination with lipreading (Clark et al 1981).
  • Item
    Thumbnail Image
    Evaluation of expandable leadwires for paediatric cochlear implants
    Xu, Shi-Ang. ; Shepherd, Robert K. ; Clark, Graeme M. ; Tong, Yit C. ; Williams, John F. ( 1993)
    The development of cochlear implants for use in very young children (1-2 years old) will require techniques designed to accommodate temporal bone growth. Previous anatomic studies have shown that the leadwire of a cochlear implant must be capable of expanding up to 20 mm between the round window and the implanted receiver-stimulator in response to skull growth. In the present study morphologic and biomechanical evaluation of five expandable leadwire designs was conducted following their implantation in young cats. Two helical shaped leadwire designs frequently exhibited extensive fibrous tissue adhesions and broke during long-term implantation. In contrast, thin, flexible Silastic envelopes were effective in minimizing tissue adhesions. Residual V- and Z-shaped leadwires, placed in these envelopes, showed little evidence of fibrous tissue adhesions following implantation periods of up to 2 years. Moreover, these leadwires readily expanded both during the growth of the animal and when biomechanical expansion studies performed at the completion of the implant period. These expandable leadwire designs appear to be appropriate candidates for use in pediatric cochlear implants.
  • Item
    Thumbnail Image
    The use of click-ABR and steady state evoked potentials for hearing assessment in young cochlear implant candidates [Abstract]
    Rance, G. ; Dowell, Richard, C. ; Richards, F. W. ; Clark, Graeme M. ( 1997)
    The accurate assessment of hearing thresholds in prospective cochlear implant candidates is essential. As the minimum age of implantation has reduced, audiologists have been faced with the complicated task of obtaining precise audiometric information in children whose immaturity may severely restrict the assessment process. Clearly for these young candidates, there is a place for a reliable, objective measure of residual hearing in the pre-operative test battery. This paper examines the degree of accuracy with which the click-ABR and the steady-state evoked potential (SSEP) techniques can provide estimates of hearing level in subjects with several profound hearing loss.
  • Item
    Thumbnail Image
    Speech perception in implanted children: effects of speech processing strategy and residual hearing
    Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; Hollow, R. ; Rehn, C. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. (Mendoza Editor, 1997)
    The ability of implanted children to adapt to different speech processing strategies has been demonstrated for the Nucleus implant system. Children previously experienced with the Multipeak speech processing strategy. were able to gain significant improvements in consonant, word and sentence perception using the Speak speech processing strategy. suggesting some degree of neural plasticity in neural-auditory coding. Of 192 implanted children with different degrees of preoperative residual hearing, 65% were found to obtain significant scores on open-set speech materials using electrical stimulation alone. Those children with more residual hearing had a greater probability of achieving open-set understanding and at a minimum level, perceived high frequency consonant information which would not have been available through conventional hearing aids.
  • Item
    Thumbnail Image
    Expandable leadwires for a paediatric cochlear implant [Abstract]
    Xu, Shi-Ang. ; Shepherd, Robert K. ; Clark, Graeme M. ( 1993)
    Anatomic studies of skull growth have shown an increase (about 20 mm) in the distance between the round window and the asterion where the receiver-stimulator is usually located. In order to accommodate the skull growth of young patients, an expandable leadwire connecting the receiver-stimulator and the electrode array is necessary. Several expandable leadwires were evaluated in experimental animals, including helical leadwires protected by Silastic tubes and leadwires, with "V" or "W"-shaped levels in a single phase, and protected by thin Silastic or Teflon bags. The leadwires together with their controls were implanted on young animal's scapulae, temporal and parietal bones and in subcutaneous tissue. The in vivo expansion of the leadwire was monitored by periodic x-ray examination and the force to expand the leadwire was measured at the completion of implantation. The results showed that helical leadwires weresurrounded by fibrous tissue and a large force was required to expand them. The V or W-shaped leadwires were able to expand up to 20 mm in vivo and only a moderate force was required to expand them. For most of the cases, there was none or little fibrous tissue in Silastic or Teflon bags. The results indicated that for a paediatric cochlear implant, leadwires with V or W-shaped levels could, expand and biocompatible envelopes could effectively protect the leadwires from being bound by fibrous tissue.
  • Item
    Thumbnail Image
    Paediatric cochlear implant surgery [Abstract]
    Webb, R. L. ; Clark, Graeme M. ; Pyman, B. C. ( 1992)
    The operation in children is similar to that in adults, but special care needs to be taken with the skin flap, the anchoring of the electrode array and the sealing of .the cochleostomy. Research into the effects of head growth and otitis media in an implanted ear indicates that these should not be a problem. Surgical complications are also similar to those in adults, with the most common being related to the skin flap. The major complication rate at 4 % is slightly less than that in adults and most of these get effective implant function.
  • Item
    Thumbnail Image
    Paediatric cochlear implantation: radiological and histopathological studies of skull growth in the monkey
    Shepherd, R. K. ; XU, JIN ; Burton, Martin J. ; Xu, Shi-Ang ; Seldon, H. Lee ; Franz, Burkhard K-H. G. ; Clark, Graeme, M. ( 1993)
    The human skull undergoes significant growth within the first two years of life (Dahm et aI, 1992). Therefore, before children under two can be considered candidates for cochlear implantation, the effects of the surgical procedure on subsequent skull growth must be well understood. To evaluate the effects of implantation on skull growth four macaque monkeys were implanted with dummy cochlear implants at six months of age. To model the procedure in the very young child, the bed for the receiver-stimulator was drilled across a calvarial suture down to the underlying dura and an electrode array inserted into the scala tympani via a mastoidectomy and posterior,tympanotomy. Plain skull radiographs were perioqical1y taken to monitor skull growth for periods of up to three years following implantation. Their longitudinal measurements revealed no evidence of asymmetrical skull growth when compared with unimplanted control animals. Computer tomographic scans taken at post-mortem confirmed these findings. Finally, subsequent histopathological evaluation of the receiver-stimulator package bed indicated that it becomes obliterated by hard tissue, resulting in a localized flattening of the vault under the receiver-stimulator. However, this tissue exhibited histological evidence of sutures, indicating that the surgical procedure should not lead to premature sutural closure. In conclusion, the present experimental results suggest that long-term cochlear implantation in very young children will not lead to any significant skull deformity.
  • Item
    Thumbnail Image
    The effect of inflammation on blood vessel area as a cause of variation in ganglion cell density measurements in the cat cochlea [Abstract]
    Moralee, S. ; Shepherd, Robert K. ( 1992)
    The success of a cochlear implant depends on an adequate number of surviving spiral ganglion cells. Further loss of ganglion cells may arise from the biology of cochlear implantation itself. The quantitative analysis of ganglion cells is, therefore, an important consideration when assessing the biological safety of a cochlear implant.
  • Item
    Thumbnail Image
    Speech perception benefits for children using the 22-channel Melbourne/cochlear hearing prosthesis [Abstract]
    Sarant, J.Z. ; Hollow, P.W. ; Clark, Graeme M. ; Dowell, Richard C. ; Cowan, Robert S.C. ; Pyman, B. C. ; Dettman, S. J. ; RANCE, GARY ; Barker, Elizabeth J. ( 1993)
    In 1985; the first child was implanted with the Cochlear 22-channel cochlear prosthesis at the University of Melbourne Royal Victorian Eye & Ear Hospital Cochlear Implant Clinic. There are now 42 children who have received the device in Melbourne. Analysis of patient details for these children show a very heterogeneous group, with a wide range in age, hearing thresholds, duration of deafness and aetiology. The major aetiologies found were either a congenital profound deafness.; or a hearing loss due to meningitis. In all but 3 cases, the children are using 15 or more electrodes in the array. Speech perception benefits have been analyzed according to a six-level hierarchical classification scheme. All of-the children achieved a minimum benefit of discrimination of suprasegmental information (Category 2), and 59% of the children achieved open-set understanding of unfamiliar speech material without the aid of lip-reading (Categories 5 & 6). Detailed analysis suggests that the majority of children achieving open-set speech perception benefits had more than one year of experience with their implant. and less than seven years of profound deafness prior to implantation.