Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    A comparative study of phase-contrast and conventional x-ray imaging in human temporal bone samples
    XU, JIN ; TYKOCINSKI, MICHAEL ; Saunders, E. ; Clark, Graeme M. ; Cowan, R. ( 2001)
    This study compared a new x-ray modality, phase-contrast radiography, with conventional radiography for imaging in human temporal bones and also investigated its potential application in the development of electrode arrays for advanced cochlear implants. Nucleus standard electrode arrays and peri-modiolar Contourn.4 electrode arrays were implanted into the cochleae of 10 human temporal bones. Both conventional and phase-contrast radiographs were taken of ~ach temporal bon~. The phase-contrast radiographs showed significant improvements over conventional radiographs in the detail of temporal bone images. These improvements included enhanced contrast at the edge of canal type features, inherent image magnification, higher spatial resolution, and ability to use detectors such as Imaging Plates. The results demonstrate that phase-contrast imaging can have important advantages in visualisation of anatomical details of both the inner ear structures and the microelectrode. It can provide a clearer definition of electrode location in relation to cochlear walls. This study demonstrates the feasibility of applying phase-contrast radiography to studies of the human temporal bone. However, its usefulness in the imaging of larger objects or perhaps even with patients in a clinical setting will require further investigation.
  • Item
    Thumbnail Image
    Application of advanced radiographic technology in cochlear implant research
    XU, JIN ; TYKOCINSKI, MICHAEL ; Saunders, E. ; Clark, Graeme M. ; Cowan, R. ( 2001)
    The effective development of peri-modiolar or other advanced electrode arrays for cochlear implants requires detailed analysis of the insertion procedure and electrode positioning in the cochlea. Routine x-ray techniques cannot provide sufficient detail to meet this need. A new micro-focus x-ray imaging system has been built for our research. The system consists of a x-ray tube with a sub 10-micron focal spot mounted below an adjustable work surface and an image intensifier placed approximately 100 cm above the x-ray aperture. A variety of intracochlear electrode arrays and human temporal bones were studied using this system. The micro-focus x-ray imaging system allows for micro-fluoroscopy to visualise the real time implantation procedure. It also enables capturing of images onto reusable phosphor imaging plates or films for subsequent viewing or analysis. Images are produced at up to 95 times magnification with superior resolution and enhanced contrast. This new radiographic technology plays an important role in development of safe and effective advanced intracochlear electrode arrays.
  • Item
    Thumbnail Image
    Post mortem study of the intracochlear position of the nucleus standard 22 electrode array
    XU, JIN ; Dahm, M. C. ; Tykocinski, Michael. ; Shepherd, Robert K. ; Clark, Graeme M. ( 2000)
    The final position of an intracochlear cochlear implant electrode array can vary depending on the pathology, the insertion technique used and the type of electrode array used. The distance of the electrodes from the target neural elements and the presence of intracochlear fibrous tissue or new bone formation are believed to affect the performance of the device. A post mortem study was conducted to assess these factors.
  • Item
    Thumbnail Image
    The role phase-contrast imagining in intra-cochlear electrode development
    Wilkins, S. ; Saudners, E. ; Clark, Graeme M. ; Cowan, R. ; XU, JIN ; Stevenson, A. W. ; Gao, D. ; Tykocinski, M. ; Cohen, L. ; Dahm, Markus ( 2000)
    In order to improve the design of intracochlear multichannel electrode arrays, it is fundamental that we have knowledge of the exact anatomical , position of the electrode within the scala of the cochlea. Currently, conventional skull radiography is still the mainstay of post-operative radiological assessment of electrode positioning. The present work investigates the use of phase-contrast radiography, a new x-ray modality, to provide improved imaging of the inner ear and the intracochlear electrode array in the human temporal bone (TB).
  • Item
    Thumbnail Image
    Safety studies and preliminary patient trails with a new perimodiolar electrode array
    Clark, Graeme M. ; COWAN, ROBERT ; Saunders, Elaine ; TYKOCINSKI, MICHAEL ; COHEN, LAWRENCE ; Treaba, Claudiu ; BRIGGS, ROBERT ; Dahm, Markus ( 2000)
    A new perimodiolar electrode array, the curly-with stylet (CwS), has been developed and undergone safety trials in human cadaver temporal bones. The array was developed as a result of animal and modelling studies which indicated that there are potential advantages in situating the electrode array in closer proximity to the neural elements. Preliminary studies with four patients in Melbourne implanted with a developmental pre-curved array had supported the predictions of lower current requirements and possibly more focussed spread of excitation.
  • Item
    Thumbnail Image
    Insertion study using new peri-modiolar electrode array designs [Abstract]
    Treaba, Claudiu ; Clark, Graeme M. ; Cowan, Robert S. ; Tykocinski, Michael J. ; Cohen, Lawrence T. ; Saunders, Elaine ; Pyman, Brian C. ; Briggs, Robert S. ; Dahm, Markus C. ( 1999)
    Intracochlear multi-channel cochlear implants have been shown to successfully provide auditory information for profoundly deaf patients by electrically stimulating discrete populations of auditory nerve fibers via a scala tympani (ST) electrode array. Histological and radiological examination of implanted human temporal bones showed that the current straight Nucleus® array is usually positioned against the outer wall of the ST. An electrode array close to the modiolus could be expected to reduce stimulation thresholds and result in a more localized neural excitation pattern.
  • Item
    Thumbnail Image
    The development of a precurved cochlear implant electrode array and its preliminary psychophysical evaluation [Abstract]
    Cohen, L. T. ; Saunders, E. ; Treaba, C. ; Pyman, B. C. ; Clark, Graeme M. ( 1998)
    A precurved banded electrode array may provide a better interface with the auditory neural pathways for cochlear implants, and provide better speech perception. A prototype arrray has been further evaluated for ease of insertion, siting within the cochlea and induction of any cochlear trauma. The arrays were inserted into the human cochlear under simulated surgery. The bones were embedded in Araldite, X-rayed and sectioned. X-ray reconstruction analyses of the position of the implanted array showed its insertion to be favourable. Cochlear implants with precurved arrays have been implanted in three patients. Psychophysical evaluation and X-ray analyses have shown that as electrode distance from the modiolus decreased: threshold current decreased; dynamic range increased; current spread as measured by forward masking studies, was more focused; electrode discrimination with loudness jitter (being abetter representation of the dynamic speech signal) improved; JNDs for loudness, expressed as a function of dynamic range, decreased.
  • Item
    Thumbnail Image
    "Cochlear View" and its application in cochlear implant patients [Abstract]
    Xu, J. ; Xu, S. A. ; Clark, Graeme M. ; Marsh, M. A. ( 1994)
    Recent advances in multichannel intracochlear implantation have generated interests in correlating individual stimulating electrodes to pitch perception. An appropriate radiographic technique is required to precisely document the location of the implanted intracochlear electrode array. Anatomical studies, including the measurements of the temporal bone using high-resolution CT films and 3D reconstruction from the petrous bone sections, were conducted to define the spatial position of cochlea in the skull. Thus, a "Cochlear View" was designed and introduced for postoperative radiological evaluation of multichannel intracochlear implantation. In this paper, a detailed radiographic method and radiological interpretation of the "Cochlear View" are described. A plain radiograph of the "Cochlear View" was taken of 120 patients who had received the Nucleus multichannel implant. Studies have shown that a plain radiograph of the "Cochlear View" provides sufficient information to correctly evaluate the results of implantation, including the insertion depth and position of individual electrodes. It plays an important role in guiding the management of frequency mapping and acts as a useful reference for further research purposes.
  • Item
    Thumbnail Image
    Musical pitch perception by a user of the Nucleus 22-electrode cochlear implant [Abstract]
    McDermott, Hugh J. ; McKay, Colette M. ( 1995)
    The study of how musical sounds are perceived by users of cochlear implants is both interesting and rewarding. In particular, it has the potential to provide detailed information on the perception of pitch with electrical stimulation of the auditory nerve. However, it is difficult to find subjects whose understanding of musical terminology and memory of conventional musical pitch relationships are adequate for this research. In our Melbourne laboratory, we have been fortunate to locate one implant user who received several years' formal training in the tuning of musical instruments before he lost his hearing. This subject is capable of estimating musical intervals in an open-set context, and can also adjust the interval between two "notes" to match a given target. Experiments involving both estimation and production of musical intervals have been carried out. Several parameters of the electrical stimulation have been varied to create notes of different pitches. These include the rate of steady pulse trains delivered to a fixed electrode position; the place of stimulation with a constant pulse rate; selected combinations of rate and place; and the frequency of sinusoidally amplitude-modulated (SAM) pulse trains delivered to a fixed electrode position. The results show that when pulse rate is the variable parameter, the rate ratio for a given musical interval closely approximates that for acoustic signals, provided that the electrode used is in the apical region of the cochlea. When the stimulation is moved to more-basal positions, the rate ratios become larger than the corresponding acoustic frequency ratios. Changing the place of stimulation with a constant pulse rate causes pitch changes that are comparable with the presumed place-to-characteristic frequency mapping of the subject's electrode array. Combinations of place and rate variation result in more complex effects, in which the pitch associated with the place of stimulation generally dominates, but is affected by the rate. The pitch of SAM pulse trains, although probably weaker than that of unmodulated low-rate pulse trains, is related to the modulation frequency. The ratio of modulation frequencies required for a given musical interval is larger than the corresponding ratio of acoustic frequencies in normal hearing.
  • Item
    Thumbnail Image
    Distribution of electrically stimulated nerve fibres in the cat cochlea
    Black, R. C. ; Clark, Graeme M. ; Walters, C. W. ( 1982)
    An implant electrode array for a cochlear hearing prosthesis has been developed with mechanical properties which allow atraumatic implantation into the human scala tympani. It consists of small platinum electrode bands welded around a flexible silicon rubber tube (Clark et al, 1979). The present study examines the properites of this electrode in electrically simulating the auidtory nerve. The electrode was inserted through the round window for a distance of 5-6mm into the scala tympani of the cat. Brainstem evoked responses and those from the round window were recorded when stimulating with square biphasic current pulses (0.1 msec/phase). Since there was usually less than 10-20 dB hearing loss in the implanted ear, it was possible to selectively mask components of these responses with high-pass filtered noise. The noise masked the response component arising from fibres in the cochlear region corresponding to the noise band. Responses were recorded in the presence of noise with different cut-off frequencies F1, F2 therefore yielded a response band-limited to the region f1-2. In this way it was possible to measure the amount of electrically stimulated activity in a number of different frequency bands. This technique is identical to that of derived response audiometry using acoustic stimulation. The input-output characteristics of the cochlea to a variety of acoustic transients were measured to exclude the possibility of either electrophonic hearing or altered basilar membrane characteristics contaminating the results. The figure shows the distributions of excited fibres using an electrode with an extended ground system running longitudinally in the cochlea. They were measure as the amplitude of the band-limited responses. Results were similar for bipolar electrodes and these electrodes are thus equally suitable for our present cochlear implant prosthesis.