Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Effects of intracochlear factors on spiral ganglion cells and auditory brain stem response after long-term electrical stimulation in deafened kittens
    Araki, Susumu ; Kawano, Atsushi ; Seldon, H. Lee ; Shepherd, Robert K. ; Funasaka, Sotaro ; Clark, Graeme M. ( 2000)
    Using an animal model, we have studied the response of the auditory brain stem to cochlear implantation and the effect of intracochlear factors on this response. Neonatally, pharmacologically deafened cats (100 to more than 180 days old) were implanted with a 4-electrode array in both cochleas. Then, the left cochlea of each cat was electrically stimulated for total periods of up to 1000 hours. After a terminal 14C-2-deoxyglucose (2DG) experiment, the fraction of the right inferior colliculus with a significant accumulation of 2DG label was calculated. Using 3-dimensional computer-aided reconstruction, we examined the cochleas of these animals for spiral ganglion cell (SGC) survival and intracochlear factors such as electrode positions, degeneration of the organ of Corti, and the degree of fibrosis of the scala tympani. The distribution of each parameter was calculated along the organ of Corti from the basal end. There was a positive correlation between SGC survival and the level of fibrosis in the scala tympani, and a negative correlation between SGC survival and the degree of organ of Corti degeneration. Finally, there was a negative correlation between the 2DG-labeled inferior colliculus volume fraction and the degree of fibrosis, particularly in the 1-mm region nearest the pair of electrodes, and presumably in the basal turn.
  • Item
    Thumbnail Image
    Electrode discrimination by early-deafened subjects using the Cochlear Limited multiple electrode cochlear implant
    Busby, P. A. ; Clark, Graeme M. ( 2000)
    Objective: The aims of this study were to determine whether electrode discrimination by early-deafened subjects using the Cochlear Limited prosthesis varied at different locations on the electrode array, was influenced by the effects of auditory deprivation and experience with electric stimulation, and was related to speech perception. Design: Difference limens for electrode discrimination were measured in 16 early-deafened subjects at three positions on the array: electrodes 18 (apical), 14 (mid), and 8 (basal). Electrodes were stimulated using random variations in current level to minimize the influence of loudness cues. Assessed were correlations between the difference limens, subject variables related to auditory deprivation (age at onset of deafness, duration of deafness, and age at implantation) and auditory experience (duration of implant use and the total time period of auditory experience), and speech perception scores from two closed-set and two open-set tests. Results: The average difference limens across the three positions were less than two electrodes for 75%, of subjects, with average limens between 2 and 6.5 electrodes for the remaining 25% of subjects. Significant differences across the three positions were found for 69% of subjects. The average limens and those at the basal position positively correlated with variables related to auditory deprivation, with larger limens for subjects implanted at a later age and with a longer duration of deafness. The average limens and those at the apical position negatively correlated with closed-set speech perception scores, with lower scores for subjects with larger limens, but not with open-set scores. Speech scores also negatively correlated with variables related to auditory deprivation. Conclusions: These findings showed that early-deafened subjects were generally successful in electrode discrimination although performance varied across the array for over half the subjects. Discrimination performance was influenced by the effects of auditory deprivation, and both electrode discrimination and variables related to auditory deprivation influenced closed-set speech perception.
  • Item
    Thumbnail Image
    Synchronization of the neural response to noisy periodic synaptic input
    Burkitt, AN ; Clark, GM (M I T PRESS, 2001-12)
    The timing information contained in the response of a neuron to noisy periodic synaptic input is analyzed for the leaky integrate-and-fire neural model. We address the question of the relationship between the timing of the synaptic inputs and the output spikes. This requires an analysis of the interspike interval distribution of the output spikes, which is obtained in the gaussian approximation. The conditional output spike density in response to noisy periodic input is evaluated as a function of the initial phase of the inputs. This enables the phase transition matrix to be calculated, which relates the phase at which the output spike is generated to the initial phase of the inputs. The interspike interval histogram and the period histogram for the neural response to ongoing periodic input are then evaluated by using the leading eigenvector of this phase transition matrix. The synchronization index of the output spikes is found to increase sharply as the inputs become synchronized. This enhancement of synchronization is most pronounced for large numbers of inputs and lower frequencies of modulation and also for rates of input near the critical input rate. However, the mutual information between the input phase of the stimulus and the timing of output spikes is found to decrease at low input rates as the number of inputs increases. The results show close agreement with those obtained from numerical simulations for large numbers of inputs.