Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Physiological and histopathological effects of chronic monopolar high rate stimulation on the auditory nerve
    TYKOCINSKI, MICHAEL ; Linahan, N. ; Shepherd, R. K. ; Clark, Graeme M. ( 2000)
    Speech processing strategies based on high rate electrical stimulation have been associated with improvements in speech perception among cochlear implant users. The present study was designed to evaluate the electrophysiological and histopathological effects of long-term intracochlear monopolar stimulation at the maximum stimulus rate of the current Nucleus Cochlear implant system (14493 pulses/s) as part of our ongoing investigations of safety issues associated with cochlear implants
  • Item
    Thumbnail Image
    Advances in cochlear implant speech processing [Abstract]
    Clark, Graeme M. ( 1997)
    Our early research emphasized there was a restriction on the amount of speech and other acoustic information that could be transmitted to the nervous system by electrical stimulation of the auditory nerve. It also showed the need to use multiple-channel stimulation, and minimize channel interaction. As a result our research over the last 30 years has been directed towards optimizing the information presented to the auditory nervous system. This has involved extracting the energy of the first and second formants (FO/F2-WSP II; FO/FI/F2-WSP III; Multipeak-MSP) as well as the outputs of high band pass fixed filters (Multipeak - MSP) and coding these outputs as cochlear place of stimulation. The voicing frequency was coded as rate of stimulation. Our most recent speech processing strategy (SPEAK) extracts a specified number of .maximal outputs from a series of band pass filters, rather than selecting the peaks of energy which was the case with the other strategies. The voltages from the maximal outputs are used to stimulate appropriate electrodes on a place coding basis. The stimuli are presented at a constant stimulus rate to reduce channel interaction. Voicing is conveyed as amplitude variations.
  • Item
    Thumbnail Image
    A stimulation of spatio-temporal firing across auditory nerve fibres
    Carter, T. D. ; Irlicht, L. S. ; Au, D. ; Clark, Graeme M. ( 1997)
    Present cochlear implant speech processing strategies give recipients a perception of sound inferior to that of the normal hearing population. Since it is beyond current technology to achieve an electrically evoked auditory-nerve output identical to that of normal hearing, stimulation strategies are limited to approximating certain features of the neural firing patterns. The importance of the spatio-temporal firing patterns of an ensemble of auditory nerve fibres to speech perception has been stated in previous studies (1,2). This paper utilises a composite model of the cochlea and hair-cell/auditory nerve transduction using artificial and speech signals as input to produce a spatio-temporal excitation pattern which represents the fluctuating firing probability of the auditory neurons. A model of electrical stimulation of the auditory nerve is then used to show how stimulation strategies currently used produce neural firing patterns qualitatively different to those produced by normal hearing. Our investigations indicate that it is possible to generate electrical stimulation parameters that cause the spatio-temporal responses of the neural population to better approximate normal hearing. These responses enable us to identify stimulation parameters required to obtain the chosen neural firing patterns. A number of examples illustrate the utility of this method, revealing the spatio-temporal responses for varying numbers of neurons and electrode displacements.
  • Item
    Thumbnail Image
    Temporal coding in auditory neurons to electrical stimulation [Abstract]
    Brown, Mel ; Hocking, J. ; Clark, Graeme M. ( 1997)
    The temporal response of the auditory pathway following intracochlear electrical stimulation will reflect the level of encoded temporal information, which is important for the further developmentof cochlear implant speech processing strategies, and in tum lead to a better understanding of temporal coding of acoustic stimuli Temporal coding of sound frequencies is based on the phase or time locked neural response seen to low frequency acoustic stimuli. The ability of neurons to respond in a time locked manner may determine the degree of encoded temporal frequency information. Electrophysiological studies have shown that the degree of response synchrony to charge balanced biphasic electrical stimuli is far greater than that seen to acoustic stimuli. We have investigated the temporal response properties of single units in the anteroventral cochlear nucleus (AVCN) in the cat to rates of electrical stimulation up to 800 pulses/s.
  • Item
    Thumbnail Image
    High rate electrical stimulation of the auditory nerve: physiological and pathological results [Abstract]
    Shepherd, Robert K. ; XU, JIN ; TYKOCINSKI, MICHAEL ; Millard, Rodney, E. ; Clark, Graeme M. ( 1995)
    Previous experimental studies have shown that chronic electrical stimulation of the auditory nerve using charge balanced biphasic current pulses at rates of up to 500 pulses per second (pps) do not adversely affect the adjacent spiral ganglion population. More recently, a number of clinical trials have indicated that speech processing strategies based on high pulse rates (1000 pps and more), can further improve speech perception. In this paper we summarize our results following acute and chronic electrical stimulation of the auditory nerve using high pulse rates.
  • Item
    Thumbnail Image
    Physiological and histopathological response of the cochlea to chronic electrical stimulation of the auditory nerve at high stimulus rates [Abstract]
    Shepherd, R. K. ; Xu, J. ; Clark, Graeme M. ( 1994)
    Previous research has shown that chronic electrical stimulation of the auditory nerve using charge balanced biphasic current pulses at rates of up to 500 pulses per second (pps) does not adversely affect the adjacent spiral ganglion population. More recently, a number of clinical trials have suggested that speech processing strategies based on high pulse rates (e.g. 1000 pps), can further improve speech perception. In the present study we evaluated the physiological and histopathological response of the cochlea following long-term stimulation using rates of 1000 pps. Thirteen normal hearing cats were bilaterally implanted with scala tympani electrodes and unilaterally stimulated using 25-50 �s per phase charge balanced biphasic current pulses presented at 1000 pps. Additional charge balance was achieved by shorting the electrodes between current pulses. Each animal was stimulated for periods ranging from 700 - 2100 hours at current levels within its dynamic range. Auditory brainstem responses to both acoustic (ABR) and electrical (EABR) stimuli were periodically recorded throughout the chronic stimulation program. At completion of the program the cochleas were prepared for histological examination. While all animals exhibited an increase in acoustic thresholds following surgery, click evoked ABR's returned to near normal levels in half the animals. Frequency specific stimuli indicated that the most extensive hearing loss occurred adjacent to the array (>12 kHz) while lower frequency thresholds appeared at or near normal Our EABR data showed that the majority of animals exhibited slight increases in threshold, although response amplitudes remained very stable for the duration of the stimulus program. The physiological data reported here will be correlated with cochlear histopathology. These initial findings suggest that chronic intracochlear electrical stimulation at high pulse rates, using a carefully designed charge balanced stimulator, does not appear to adversely affect the implanted cochlea.