Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The development of the Melbourne/Cochlear multiple-channel cochlear implant for profoundly deaf children
    Clark, Graeme M. ; Busby, Peter A. ; Dowell, Richard C. ; Dawson, Pamella W. ; Pyman, Brian C. ; Webb, Robert L. ; Staller, Steven J. ; Beiter, Anne L. ; Brimacombe, Judith A. ( 1992)
    In 1978-79, a speech processing strategy which extracted the voicing (FO) and second formant (F2) frequencies and presented these as rate and place of stimulation respectively to residual auditory nerve fibres was developed for the University of Melbourne's prototype multiple-channel receiver-stimulator (Clark et aI1977, Clark et a11978, Tong et aI1980). This speech processing strategy was shown to provide post linguistically deaf adults with some open-set speech comprehension using electrical stimulation alone, and considerable help when used in combination with lipreading (Clark et al 1981).
  • Item
    Thumbnail Image
    Speech perception, production and language results in a group of children using the 22-electrode cochlear implant
    Blamey, P. J. ; Dawson, P. W. ; Dettman, S. J. ; Rowland, L. C. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Rickards, F. W. ; Clark, Graeme M. ( 1992)
    Five children out of a group of nine (aged 5.5 to 19.9 years) implanted with the 22-electrode cochlear implant (Cochlear Ply. Ltd.) have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores for monosyllabic words ranged from 40% to 72%. Word scores in sentences ranged from 26% to 74%. Four of these five children were implanted during preadolescence. The fifth child, who had a progressive loss and was implanted during adolescence after a short period of very profound deafness, scored highest on all speech perception tests. The remaining four children who did not demonstrate open-set recognition were implanted during adolescence after a long duration of profound deafness. Post-operative performance on closed-set speech perception tests was better than pre-operative performance for all children. Improvements in speech and language assessments were also noted. These improvements tended to be greater for the younger children. The results are discussed with reference to variables which may contribute to successful implant use: such as age at onset, duration of profound hearing loss, age at implantation, aetiology, educational program, and the type of training provided.
  • Item
    Thumbnail Image
    Paediatric cochlear implantation: radiologic observations of skull growth
    XU, JIN ; Shepherd, Robert K. ; Xu, Shi-Ang ; Seldon, H. Lee ; Clark, Graeme M. ( 1993)
    We investigated the effects of long-term implantation of auditory prostheses on skull growth in young animals. Four monkeys were implanted with dummy cochlear implants at 6 months of age. To simulate implantation in children, the bed for the receiver-stimulator or interconnecting plug was drilled across a calvarial suture down to the underlying dura. Plain skull oentgenograms were periodically taken to monitor head growth for up to 3 years after implantation. These longitudinal measurements revealed no significant asymmetric skull growth. Postmortem measurements using computed tomographic scans confirmed these results and showed no significant difference in the intracranial volumes between the implanted and control sides of each animal or between experimental and nonimplanted control monkeys. These results suggest that long-term cochlear implantation in very young children will not cause any significant deformity of the skull.
  • Item
    Thumbnail Image
    The postnatal growth of the temporal bone and its implications for cochlear implantation in children
    Dahm, Markus C. ; Shepherd, Robert K. ; Clark, Graeme M. ( 1993)
    The postnatal growth of the human temporal bone was examined by direct anatomical measurements on 60 cadaver specimens of all ages. The bones were dissected as one would perform cochlear implant surgery using a posterior tympanotomy approach. Nineteen anatomical /surgical landmarks with implications for cochlear implant surgery were identified on each bone and the distance between these points measured. The temporal hone was found to be a complex structure, phylogenetically, anatomically and functionally consisting of four different parts with independent postnatal development. The inner and middle cars were adult size at birth. The external auditory canal and most parts of the temporal hone were subject to significant lateral growth. The size of the pneumatised mastoid increased in all directions. In the facial recess, however, no postnatal growth was observed. Between birth and adulthood an average of 12 mm (SD 5 mm) of growth was seen directly between the sino-dural angle and the round window, the landmarks approximating the Implantation site for the receiver-stimulator and the electrode entry point into the inner car. However, if an electrode leadwire is fixed at a cortical fixation site such as the posterosuperior point of Macewen's triangle, the leadwire would be subject to approximately 20 mm of growth. These results indicate that a paediatric cochlear implant design incorporating an expandable leadwire to accommodate this growth should allow up to 25 mm of leadwire lengthening. The fossa incudis showed no growth relative to the round window and was found to be a convenient fixation site for the electrode array close to the cochlea. From an anatomical and surgical point of view, cochlear implantation in very young children is feasible, provided the electrode array is secured and the design accommodates for controlled leadwire lengthening.