Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Continuing improvements in speech processing for adult cochlear implant patients
    Hollow, R. D. ; Dowell, R. C. ; Cowan, R. S. C. ; Skok, M. C. ; Pyman, B. C. ; Clark, Graeme M. ( 1995)
    The Cochlear 22-channel cochlear implant has employed a succession of improved speech-processing strategies since its first use in an adult patient in Melbourne in 1982. 1 The first patients received the F0F2 coding strategy developed by the University of Melbourne, in the Wearable Speech Processor (WSP). The F0F2 coding scheme presented the implant user with three acoustic features of speech. These were 1) the amplitude of the waveform, presented as the amount of current charge, 2) fundamental frequency (F0) or voice pitch, presented as rate of biphasic pulsatile stimulation, and 3) the spectral range of the second formant frequency (F2), which was represented by varying the site of stimulation along the electrode array.
  • Item
    Thumbnail Image
    Accuracy of behavioural threshold prediction using steady-state evoked potentials [Abstract]
    RANCE, GARY ; RICKARDS, FIELD ; Cohen, Laurie ; Clark, Graeme M. ( 1994)
    This paper examines the confidence with which predictions of hearing level can be made using the steady-state evoked potential (SSEP) technique. Steady-state evoked potentials are scalp potentials that can be elicited in response to sinusoidally amplitude and/or frequency modulated tones in sleeping or awake subjects. SSEP thresholds were obtained using frequency specific stimuli at octave frequencies between 250Hz and 4000Hz in 25 children and 35 adults with varying degrees of sensori-neural hearing loss. These levels, determined automatically by a computerised detection system, were then compared with thresholds obtained behaviourally. Linear regression analyses of this data have shown that the SSEP procedure allows objective estimates of hearing level to be made for a range of carrier frequencies to within 10dB accuracy on 96% of occasions.
  • Item
    Thumbnail Image
    Hearing, vocalization and the external ear of a marsupial, the northern quoll, Dasyurus hallucatus
    Aitkin, L. M. ; Nelson, J. E. ; Shepherd, R. K. ( 1994)
    As part of a continuing study of the development of the marsupial auditory system, auditory brainstem responses (ABR) were recorded and an ABR audiogram was constructed for five female Northern Quolls (Dasyurus hallucatus), which are nocturnal carnivores. The best frequency for hearing lies between 8 and 10 kHz, and at 50 dB SPL there is a range from about 0.5 to 40 kHz. Vocalizations of adult quolls and pouch-young were recorded with a digital audio tape recorder, and the power spectra of representative calls were compared with the ABR audiogram. The common adult vocalizations have most energy at the lower end of the hearing range, whereas frequencies that are dominant in the isolation calls of the pouch-young lie close to the best frequency of hearing. Samples of nocturnal sounds of the habitat of the quoll were also recorded and analyzed. Power spectra have peak energy at frequencies between 2 and 5 kHz, with a smaller contribution above 10 kHz. The spectrum contains relatively little power at the best frequency of hearing. Measurements of the sound pressure level at the external ear canal as a function of stimulus frequency and location in space suggest that the directional amplifying properties of the pinna will operate most effectively on sound frequencies at the upper end of the quoll's hearing range, a region that may be important in prey detection. Comparisons are made with other mammalian nocturnal carnivores and with other marsupials. We speculate that, for nocturnal carnivores, one role of the low-frequency part of the hearing range concerns the recognition of adult conspecifics, the mid-frequency range is important for the detection of pouch-young, and the upper range may be particularly concerned with prey/predator detection.
  • Item
    Thumbnail Image
    Speech perception for adults using cochlear implants
    Dowell, Richard C. (Whurr, 1994)
    A mere 16 years ago, the title of this chapter would have created considerable consternation in audiological circles. A high proportion of otologists and audiologists would have wondered, with good reason, about the potential content of such a chapter. In 1977, there were certainly cochlear implants in use with reported benefits, but reliable documentation of any useful speech perception under controlled conditions was difficult to find. The rapid development of cochlear prostheses since that time has led to thousands of profoundly hearing-impaired adults obtaining benefits for speech perception, and there is now no doubt regarding the efficacy of such devices. This chapter will provide a brief overview of this rapid improvement in the speech perception of adult cochlear implant users, consider some of the reasons for this improvement, and discuss some of the factors that may influence speech perception performance for the individual user. (From Introduction)
  • Item
    Thumbnail Image
    Performance benefits and costs for children using cochlear implants and hearing aids [Abstract]
    Barker, Elizabeth ; Wright, Maree ; Godwin, Genevieve ; Hollow, Rod ; Rehn, Chris ; Gibson, William P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Dowell, Richard C. ; King, Alison ; Rennie, Maree ; Dettman, Shani J. ; Everingham, Colleen ( 1998)
    The value of cochlear implants as an established clinical option for profoundly hearing impaired adults and children has been supported by significant research results over a number of years which has clearly established the benefits available (U.S. National Institutes of Health Consensus Statement 1995). Benefit has traditionally been considered as the direct impact of the cochlear implant procedure on speech perception, or in the case of children, on the use of that auditory information to develop understandable speech and to acquire a knowledge of language. As a consequence of continuing research to improve hardware and speech processing strategies, mean scores on open-set tests of monosyllables or sentence materials for implanted adults using the cochlear implant alone without lipreading have continued to show an upwards trend. In response to the increased mean scores in quiet, perception tests in background noise are now being used as a more accurate direct measure of the potential benefits of cochlear implants to severely-to-profoundly hearing-impaired candidates. Consideration should also be given to indirect benefits, such as reduction in the stress of listening and lipreading, improved performance at work, enhanced opportunity to maintain speech, or in children to develop speech which is understandable to the general community, and the social effects of reducing the isolating effects of profound deafness. Measurement of indirect benefit can be combined with an analysis of the costs of the procedure, enabling evaluation of the implant procedure from a cost-utility standpoint, and a comparison of outcomes using other technologies such as hearing aids. This study will present data on direct and indirect benefits for hearing-impaired children using Nucleus cochlear implant systems, and compare this data with benefits shown for similarly hearing impaired children using hearing aids. The significance of these results to cost-effective delivery of services will be discussed.
  • Item
    Thumbnail Image
    Rehabilitation strategies for adult cochlear implant users
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    This paper summarizes open-set speech perception results using audition alone for a large group of adult Nucleus cochlear implant users in Melbourne. The results show wide variation in performance but significant improvement over the years from 1982 to 1995. Analysis of these results shows that speech processor developments have made the major contribution to this improvement over this time. Recent results for patients using the SPECTRA-SPEAK processor show !hat most subjects obtain good speech perception within six months of implantation and the need for intensive auditory training is minimal for many of these patients. Postoperative care should encourage consistent device use by providing opportunities for success and providing long term technical support for implant users. In some cases, including elderly patients, those with long term profound deafness, and those with special needs, there will still be a need for additional rehabilitation and auditory training support.