Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Introduction: International Cochlear Implant, Speech and Hearing Symposium - Melbourne 1994
    Clark, Graeme M. ; Cowan, Robert S. C. ( 1995)
    The International Cochlear Implant Speech and Hearing Symposium - Melbourne 1994 covered a wide range of presentations in a number of disciplines. The scientific program included 287 oral presentations and 40 posters, presented to a total of 456 delegates from 38 countries. This was a considerable expansion in the number and range of presentations from the first international conference held in Melbourne in 1985 (Ann Otol Rhinal Laryngal 1987;96[suppl 128]). This growth highlights the importance of the discipline and the advances being made in this area.
  • Item
    Thumbnail Image
    The progress of children using the multichannel cochlear implant in Melbourne
    Cowan, R. S. C. ; Dowell, R. C. ; Hollow, R. ; Dettman, S. J. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Galvin, K. L. ; Webb, R. C. ; Pyman, B. C. ; Cousins, V. C. ; Clark, Graeme M. ( 1995)
    Multi-channel cochlear implantation in children began in Australia in 1985 and there are now close to 4000 profoundly deaf children and adolescents using the Australian implant system around the world. The aim of the implant procedure is to provide adequate hearing for speech and language development through auditory input. This contrasts with the situation for adults with acquired deafness where the cochlear implant aims to restore hearing for someone with well-developed auditory processing and language skills. As with adults, results vary over a wide range for children using the Multi-channel implant. Many factors have been suggested that may contribute to differences in speech perception for implanted children. In an attempt to better understand these factors, the speech perception results for children implanted in Melbourne were reviewed and subjected to statistical analysis. This has indicated that the amount of experience with the implant and the length of sensory deprivation are strongly correlated with perceptual results. This means that younger children are likely to perform better with an implant and that a number of years of experience are required for children to reach their full potential. The results have also indicated that educational placement and management play a crucial role in children reaching their potential. Overall, 60% of the children and adolescents in the study have reached a level of open-set speech understanding using the cochlear implant without lipreading.
  • Item
    Thumbnail Image
    Investigations on a curved intracochlear array
    Donnelly, M. J. ; Cohen, L. T. ; Xu, J. ; Xu, S-A. ; Clark, Graeme M. ( 1995)
    The electrode array of a multiple-channel cochlear implant lies against the outer wall of the scala tympani. From this position electrical current spreads to excite residual neural elements, particularly spiral ganglion cells within the modiolus. It is not clear whether the spread of current from the outer wall is optimal for multiple-channel speech processing, but placement closer to the target nerves could result in lower thresholds. This could have benefits through the use of shorter pulse durations and extended battery life. Computer modeling studies and animal experiments have suggested that for localized current the optimal electrode position is adjacent to the modiolus. At the University of Melbourne it was felt that an electrode with a curve matching the internal cochlear spiral would remain close to the modiolus after insertion. A curved electrode was developed and an inserting tool was designed and produced (Treaba et al, this suppl, this section). Preliminary studies suggested that the electrode array did indeed remain close to the modiolus. Before further development of this type of electrode design, it was necessary to determine whether modifications to the surgical technique for its insertion were required. It was also important to ensure that the curved electrode fabricated for clinical trial would lie closer to the modiolus than to the outer wall of the scala tympani. This study was undertaken to examine these issues.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Cochlear implants in children: unlimited potential? [Abstract]
    DOWELL, RICHARD ; Clark, Graeme M. ( 1994)
    Multichannel cochlear implants have been in use for adolescents for 8 years and for children for 6 years. Due to the substantial benefits obtained by postlinguistically deafened adults using multichannel implants, there was a degree of optimism about the potential benefits for profoundly hearing impaired children using these devices. It was speculated that children may adapt more quickly and learn to use information from implants more effectively than adults. On the other hand, there were cautionary predictions that there may be a "critical age", particularly for congenitally or early deafened children, that, once passed, would preclude effective use of auditory information from implants. This age was variously predicted to be anywhere from 2 to 12 years, based on neurophysiological, developmental or psychological arguments. With some years of experience with implanted children, it can now be said that neither the optimistic nor the more cautionary "critical age" predictions have been supported. As with many areas of clinical science, the situation appears to be far more complex than first thought. This paper will discuss the results obtained for 100 children using the multichannel cochlear implant in Sydney and Melbourne in terms of predictive factors, and the potential for the future application of multichannel cochlear implants in children. The results suggest that experience with implant, the number of years of auditory deprivation, the amount of preoperative residual hearing, and the postoperative educational environment may have a significant effect on speech perceptual abilities in implanted children. In addition, approximately 60% of all implanted children show significant open-set speech perception ability with auditory input alone. It is now possible for multichannel cochlear implants to provide auditory skills sufficient for young children to develop functionally normal speech and language through audition, provided consistent, long term habilitation is available.
  • Item
    Thumbnail Image
    Speech perception benefits for implanted children with preoperative residual hearing [Abstract]
    Hollow, R. ; Rance, G. ; Dowell, R.C. ; Pyman, B. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Dettman, S. ( 1995)
    Since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, there has been rapid expansion in the number of implanted children world-wide. Improved surgical technique and experience in paediatric assessment and management have contributed to a trend to implant very young children. At the same time there has also been continuing development of improved speech processing strategies resulting in greater speech perception benefits. In the Melbourne program, over 60% of children obtain significant scores on open-set word and sentence tests using their cochlear implant alone without the aid of lipreading. As parents and professionals have become aware of these improved benefits to speech perception benefits in profoundly deaf children, there have been requests to consider implanting severely-to-profoundly deaf children. In these children with higher levels of residual hearing, only those children with poorer-than-expected performance on speech perception tests using hearing aids have been considered for surgery. A number of such cases have now been implanted in the Melbourne program. The speech perception benefits for this group are reported and are being compared with benefits for the profoundly deaf group of children.
  • Item
    Thumbnail Image
    Musical pitch perception by a user of the Nucleus 22-electrode cochlear implant [Abstract]
    McDermott, Hugh J. ; McKay, Colette M. ( 1995)
    The study of how musical sounds are perceived by users of cochlear implants is both interesting and rewarding. In particular, it has the potential to provide detailed information on the perception of pitch with electrical stimulation of the auditory nerve. However, it is difficult to find subjects whose understanding of musical terminology and memory of conventional musical pitch relationships are adequate for this research. In our Melbourne laboratory, we have been fortunate to locate one implant user who received several years' formal training in the tuning of musical instruments before he lost his hearing. This subject is capable of estimating musical intervals in an open-set context, and can also adjust the interval between two "notes" to match a given target. Experiments involving both estimation and production of musical intervals have been carried out. Several parameters of the electrical stimulation have been varied to create notes of different pitches. These include the rate of steady pulse trains delivered to a fixed electrode position; the place of stimulation with a constant pulse rate; selected combinations of rate and place; and the frequency of sinusoidally amplitude-modulated (SAM) pulse trains delivered to a fixed electrode position. The results show that when pulse rate is the variable parameter, the rate ratio for a given musical interval closely approximates that for acoustic signals, provided that the electrode used is in the apical region of the cochlea. When the stimulation is moved to more-basal positions, the rate ratios become larger than the corresponding acoustic frequency ratios. Changing the place of stimulation with a constant pulse rate causes pitch changes that are comparable with the presumed place-to-characteristic frequency mapping of the subject's electrode array. Combinations of place and rate variation result in more complex effects, in which the pitch associated with the place of stimulation generally dominates, but is affected by the rate. The pitch of SAM pulse trains, although probably weaker than that of unmodulated low-rate pulse trains, is related to the modulation frequency. The ratio of modulation frequencies required for a given musical interval is larger than the corresponding ratio of acoustic frequencies in normal hearing.