Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Speech perception in implanted children: influence of preoperative residual hearing on outcomes [Abstract]
    Cowan, R. S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. ; Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; HOLLOW, RODNEY ; Rehn, C. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1998)
    Since the first child was implanted with the Nucleus 22-channel prosthesis in Melbourne in 1985, several thousand children world-wide have now benefitted from this technology. More effective paediatric assessment and management procedures have now been developed, allowing cochlear implants to be offered to children under the age of 2 years. Improvements in speech processing strategy have also been implemented in the Nucleus implant system, resulting in increased mean speech perception benefits for implanted adults. Although a range of performance on formal measures of hearing, speech or language has been reported for children using implants, results from the first decade of implant experience consistently show that significant benefits are available to children receiving their implant at an early age. Reported speech perception results for implanted children show that a considerable proportion (60%) of paediatric patients in the Melbourne and Sydney clinics are able to understand some open-set speech using electrical stimulation alone. These results, and the upward trend of mean speech perception benefits shown for postlinguistically deafened adults have raised questions as to whether severely, or severely-to-profoundly deaf children currently using hearing aids would in fact benefit more from a cochlear implant. To investigate the potential influence of the degree of preoperative residual hearing on postoperative speech perception, results for all implanted children in the Melbourne and Sydney cochlear implant programs were analysed. Results showed that as a group, children with higher levels of preoperative residual hearing were consistently more likely to achieve open-set speech perception benefits. Potential factors in this finding could be higher levels of ganglion cell survival or greater patterning of the auditory pathways using conventional hearing aids prior to implantation. Conversely, children with the least preoperative residual hearing were less predictable, with some children achieving open-set perception, and others showing more limited closed-set benefits to perception. For these children, it is likely that preoperative residual hearing is of less significance than other factors in outcomes.
  • Item
    Thumbnail Image
    Issues in long-term management of children with cochlear implants and tactile devices [Abstract]
    COWAN, ROBERT ; DOWELL, RICHARD ; Barker, Elizabeth ; GALVIN, KARYN ; DETTMAN, SHANI ; SARANT, JULIA ; RANCE, GARY ; Hollow, Rod ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    For many children with severe and profound hearing losses, conventional hearing aids are unable to provide sufficient amplification to ensure good oral communication and/or in the case of very young children, development of speech and language. Traditionally a number of these children have opted for the use of sign language alone or in Total Communication approaches as a primary means of communication. The advent of multiple channel cochlear implants for children and the continuing development of multiple channel speech processing tactile devices provide auditory approaches to resolving communication difficulties for these children. The successful use of such devices depends on a number of factors including the information provided through the aid; the ease of use, convenience and reliability of the aid; the individual communication needs of the child; and the habilitation and management program used with the device. Long-term data has shown that children continue to show increased speech perception benefits from improvements in speech processing and from further experience with these devices. Habilitation and management programs must therefore be geared to meet the changing needs of children as they progress and of families as children mature and face new challenges. Habilitation must address specific individual needs in speech perception and in speech production. For very young children, benefits of improved speech perception should have an impact on the development of speech and language, and habilitation and management must emphasise the need for language growth.
  • Item
    Thumbnail Image
    Combined cochlear implant and speech processing hearing aid for implant users with a severe to profound hearing loss in the contralateral ear [Abstract]
    BLAMEY, PETER ; Parisi, Elvira ; Dooley, Gary ( 1994)
    The bimodal device was developed for cochlear implant users who simultaneously wear a hearing aid in the opposite ear having residual hearing of a severe to profound degree. The aim was to create a single device to provide both input signals in a more compatible manner and thus maximise use of the individual's total hearing capabilities. The acoustic component of the bimodal device is very flexible and can implement various speech processing strategies with speed, ease and precision. The Frequency Response Tailoring strategy utilises three filters to fit a frequency gain curve to within 1-2 dB of that desired. Modifications at discrete frequencies, ranges or slopes can be readily made. The Peak Sharpening or Spectral Enhancement strategy amplifies the formant peaks in speech for potential improvement of formant resolution and speech perception in the presence of background noise. The Resynthesis strategy presents specifically selected components of speech in selected combinations and includes the ability to transpose higher frequency information to lower frequency ranges for individuals with no aidable high frequency hearing levels. Different fits can be quickly and easily interchanged for comparison and evaluation and subsequent modifications indicated can be readily effected. Any combination of acoustic and implant speech processing strategy can be presented to optimise speech perception for the individual user.
  • Item
    Thumbnail Image
    Psychophysics of electrical stimulation of the auditory nerve: implications for coding of sound and speech processing for cochlear implants [Keynote address]
    Clark, Graeme M. ( 1994)
    Psychophysical studies on electrical stimulation of the auditory nerve have contributed to our understanding of the coding of sound and speech signals. Those studies have also helped establish speech processing strategies for multiple-electrode cochlear implant patients. The first studies were on temporal coding of frequency and pitch perception to help determine whether a single or multiple electrode implant would be preferable for the coding of speech frequencies. Temporal frequency coding was initially studied in the experimental animal by measuring difference limens for frequency of stimulus rate. The results showed that rate coding occurs for low frequencies up to 200 or even 600 pulses per second. It was concluded that higher speech frequencies cannot be conveyed by variations in stimulus rate but require multiple-electrode stimulation. These studies in experimental animals were essentially confirmed in the human.
  • Item
    Thumbnail Image
    Loudness growth characteristics of cochlear implantees using the Spectral Maxima Sound Processor [Abstract]
    MCDERMOTT, HUGH ; MCKAY, COLETTE ( 1994)
    The study of perceptual characteristics of subjects with cochlear implants can lead to improvements in the design of speech processors. One important aspect of speech processing which has received little attention in the past is the conversion acoustic signal amplitudes into appropriate levels of electrical stimulation. The optimum conversion would provide implantees with loudness growth characteristics that mimic those of normal hearing. To investigate how implantees using the Spectral Maxima Sound Processor (SMSP) perceive changes in loudness, an experiment involving production of fixed loudness ratios was conducted. Ten subjects participated: five users of the Mini System 22 cochlear implant, and five normally-hearing subjects. In the experiment, the subjects were required to adjust the loudness of two stimuli (white noise and speech-weighted noise) to equal half or twice that of a reference. The reference was presented at various levels over a range of 25 to 75 dBA. The results for three of the implantees were similar to those of all the normally-hearing subjects, who produced an average level change of 10.8 dB for the task. The remaining subjects, who had the largest electrical dynamic ranges, produced larger level changes (up to 20 dB) which were constrained by the limited electrical dynamic range of the processor (46 dB). The SMSP utilises an amplitude conversion function by which the stimulus level (in dB) is directly proportional to the input sound level (in dB). The experimental results suggest that the shape of this function is satisfactory, though not necessarily optimum, for these implantees.