Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole
    Stewart, EM ; Liu, X ; Clark, GM ; Kapsa, RMI ; Wallace, GG (ELSEVIER SCI LTD, 2012-01)
    We have investigated the application of polypyrrole (pPy) as a material to influence neointimal cell behaviour. The physico-chemical properties of pPy doped with heparin (Hep), para-toluene sulfonate, poly(2-methoxyaniline-5-sulfonic acid) (pMAS) and nitrate ions were studied in addition to cell adhesion and proliferation studies of neointimal relevant cell lines cultured on the pPy substrates. Both smooth muscle (hSMC) and endothelial (hEC) cell types adhered and proliferated best on the smooth, hydrophilic pPy/pMAS material. Moreover, pPy/Hep is able to support the proliferation of hECs on the surface but inhibits hSMC proliferation after 4 days of culture. The inhibitory effect on hSMCs is most likely due to the well-known antiproliferative effect of heparin on hSMC growth. The results presented indicate that surface exposed heparin binds to the putative heparin receptor of hSMCs and is sufficient to inhibit proliferation. The application of galvanostatically synthesized pPy/Hep to stent surfaces presents a novel bioactive control mechanism to control neointimal cell growth.
  • Item
    Thumbnail Image
    Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes
    Evans, AJ ; Thompson, BC ; Wallace, GG ; Millard, R ; O'Leary, SJ ; Clark, GM ; Shepherd, RK ; Richardson, RT (WILEY, 2009-10)
    Release of neurotrophin-3 (NT3) and brain-derived neurotrophic factor (BDNF) from hair cells in the cochlea is essential for the survival of spiral ganglion neurons (SGNs). Loss of hair cells associated with a sensorineural hearing loss therefore results in degeneration of SGNs, potentially reducing the performance of a cochlear implant. Exogenous replacement of either or both neurotrophins protects SGNs from degeneration after deafness. We previously incorporated NT3 into the conducting polymer polypyrrole (Ppy) synthesized with para-toluene sulfonate (pTS) to investigate whether Ppy/pTS/NT3-coated cochlear implant electrodes could provide both neurotrophic support and electrical stimulation for SGNs. Enhanced and controlled release of NT3 was achieved when Ppy/pTS/NT3-coated electrodes were subjected to electrical stimulation. Here we describe the release dynamics and biological properties of Ppy/pTS with incorporated BDNF. Release studies demonstrated slow passive diffusion of BDNF from Ppy/pTS/BDNF, with electrical stimulation significantly enhancing BDNF release over 7 days. A 3-day SGN explant assay found that neurite outgrowth from explants was 12.3-fold greater when polymers contained BDNF (p < 0.001), although electrical stimulation did not increase neurite outgrowth further. The versatility of Ppy to store and release neurotrophins, conduct electrical charge, and act as a substrate for nerve-electrode interactions is discussed for specialized applications such as cochlear implants.
  • Item
    Thumbnail Image
    Conducting polymers, dual neurotrophins and pulsed electrical stimulation - Dramatic effects on neurite outgrowth
    Thompson, BC ; Richardson, RT ; Moulton, SE ; Evans, AJ ; O'Leary, S ; Clark, GM ; Wallace, GG (ELSEVIER SCIENCE BV, 2010-01-25)
    In this study the synergistic effect of delivering two neurotrophins simultaneously to encourage neuron survival and neurite elongation was explored. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were incorporated into polypyrrole (PPy) during electrosynthesis and the amounts incorporated and released were determined using iodine-125 ((125)I) radio-labelled neurotrophins. Neurite outgrowth from cochlear neural explants grown on the conducting polymer was equivalent to that on tissue culture plastic but significantly improved with the incorporation of NT-3 and BDNF. Neurite outgrowth from explants grown on polymers containing both NT-3 and BDNF showed significant improvement over PPy doped only with NT-3, due to the synergistic effect of both neurotrophins. Neurite outgrowth was significantly improved when the polymer containing both neurotrophins was electrically stimulated. It is envisaged that when applied to the cochlear implant, these conducting and novel polymer films will provide a biocompatible substrate for storage and release of neurotrophins to help protect auditory neurons from degradation after sensorineural hearing loss and encourage neurite outgrowth towards the electrodes.
  • Item
    Thumbnail Image
    Wet-Spun Biodegradable Fibers on Conducting Platforms: Novel Architectures for Muscle Regeneration
    Razal, JM ; Kita, M ; Quigley, AF ; Kennedy, E ; Moulton, SE ; Kapsa, RMI ; Clark, GM ; Wallace, GG (WILEY-V C H VERLAG GMBH, 2009-11-09)
    Abstract Novel biosynthetic platforms supporting ex vivo growth of partially differentiated muscle cells in an aligned linear orientation that is consistent with the structural requirements of muscle tissue are described. These platforms consist of biodegradable polymer fibers spatially aligned on a conducting polymer substrate. Long multinucleated myotubes are formed from differentiation of adherent myoblasts, which align longitudinally to the fiber axis to form linear cell‐seeded biosynthetic fiber constructs. The biodegradable polymer fibers bearing undifferentiated myoblasts can be detached from the substrate following culture. The ability to remove the muscle cell‐seeded polymer fibers when required provides the means to use the biodegradable fibers as linear muscle‐seeded scaffold components suitable for in vivo implantation into muscle. These fibers are shown to promote differentiation of muscle cells in a highly organized linear unbranched format in vitro and thereby potentially facilitate more stable integration into recipient tissue, providing structural support and mechanical protection for the donor cells. In addition, the conducting substrate on which the fibers are placed provides the potential to develop electrical stimulation paradigms for optimizing the ex vivo growth and synchronization of muscle cells on the biodegradable fibers prior to implantation into diseased or damaged muscle tissue.