Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Phonetic and phonological changes in the connected speech of children using a cochlear implant
    Grogan, M. L. ; Barker, E. J. ; Dettman, S. J. ; Blamey, P. J. ( 1995)
    In excess of 5,000 children, with profound hearing impairment, have received a cochlear implant hearing device. Researchers have recently begun to study the speech production skills of these children.1-6 This topic is of interest because the speech of young prelingually or postlingually deaf children is in a constant state of development. The effectiveness of the implant, therefore, must be measured in its ability to provide enough auditory information for the child to develop intelligible speech. This is in addition to the maintenance of intelligible speech in the case of older postlingually deaf children or adults. The aim of the present study was to investigate some characteristics of the connected speech of a selected group of children from the University of Melbourne Cochlear Implant Programme. More specifically, the study aimed to determine how these characteristics changed over time. Studies of conversational speech samples are useful in that they do not depend on imitation yet they do reflect the child's everyday communication skills and are sensitive to co-articulatory effects. Analyses performed on the preoperative and postoperative data aimed to detect both the phonetic and phonologic changes in the segmental features of speech. The following questions were addressed: 1) What was the pattern of change in the phonetic inventories from before to after implantation? 2) Was there a difference in the correct production of consonants depending on their position in the word? 3) Did the group performance for correct production of phonemes change significantly from before to after implantation? 4) Did performance change over time for individuals? 5) What were the most common phonologic processes and was there a significant reduction in any of these processes from before to after implantation?
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.