Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 176
  • Item
    Thumbnail Image
    The effects of electrode position and stimulus period on the hearing sensations in a multiple-channel cochlear implant patient [Abstract]
    Tong, Y. C. ; Blamey, P. J. ; Dowell, R. C. ; Clark, Graeme M. ( 1981)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: evaluation using speech tracking
    Martin, Lois F. A. ; Tong, Yit Chow ; Clark, Graeme M. ( 1981)
    Two totally deaf patients who had received multiple-channel cochlear implants were tested using a speech "tracking" procedure in which they had to repeat verbatim passages of connected discourse. Their performance was assessed by calculating the tracking rate (words per minute) each session. Testing was carried out under two conditions - lipreading along and lipreading in conjunction with a multiple-channel cochlear implant and laboratory speech processor. Lipreading with the cochlear implant increased the tracking rates by a factor of four for one patient and by a factor of two for the other when compared with lipreading alone.
  • Item
    Thumbnail Image
    Vowel perception and hearing impairment
    Fairbank, K. ; Wals, R. ; Clark, Graeme M. ( 1981)
    The perception of vowels by young hearing-impaired and normal-hearing children was investigated in two experimental versions, one which required the child ~o make discriminations among minimal pairs, the other which was based on free choice. Each version focused on three lists which comprised monosyllabic real word-pairs whose initial and final consonants were identical. These lists were constructed around high and low frequency components of vowel spectra in order to explore those acoustic aspects which have been hypothesized (Ling, 1978) as being maximally problematic in high-frequency hearing loss. Results indicated that the normal-hearing children, in contrast to the hearing-impaired, made virtually no errors in either task. The hearing-impaired children made significantly more errors in the free-choice task and in the lists whose vowels contained the highest frequency spectra and among those word-pairs which commenced with nonstops.....
  • Item
    Thumbnail Image
    Perceptual dissimilarity and discrimination studies using two-electrode stimulation with a multiple-channel cochlear implant patient [Abstract]
    Dowell, R. C. ; Tong, Y. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1981)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using nonsense syllables
    Clark, Graeme M. ; Tong, Yit Chow ; Martin, Lois F. ; Busby, Peter A. ; Dowell, Richard C. ; Seligman, Peter M. ; Patrick, James F. ( 1981)
    A study using nonsense syllables has shown that a multiple-channel cochlear implant with speech processor is effective in providing information about, voicing and manner and to a lesser extent place distinctions. These distinctions supplement lipreading cues. Furthermore, the average percentage improvements in overall identification scores for multiple-channel electrical stimulation and lipreading compared to lipreading alone were 71% for a laboratory-based speech processor and 122 % for a wearable unit.
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using an open-set word test
    Clark, Graeme M. ; Tong, Y. C. ; Martin, L. F. ; Busby, P. A. ( 1981)
    Multiple-channel electrical stimulation of the hearing nerve in conjunction with speech reading has helped two post-lingually deaf patients with total hearing losses understand running speech in every day situations. This has been confirmed using open-set phonetically balanced word tests, where the patients achieved 60% and 40% scores with isolated-words and 80% and 73% for phonemes-in-isolated words. The tests also showed that the cochlear implant improved word recognition by a factor of four in one patient and two in another compared with speechreading alone. The speech processor used extracted the voicing frequency and energy and the frequency and energy of the dominant spectral peak in the mid-frequency range. The parameters for voicing determined the rate of stimulation for all electrodes, and the parameters for the dominant spectral peak in the midfrequency range determined the site of electrode stimulation and current level.
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant. An evaluation using closed-set spondaic words
    Clark, Graeme M. ; Tong, Y. C. ; Martin, L. F. (Cambridge University Press, 1981)
    Two post-lingually deaf patients with total hearing losses have had help in communicating, using a multiple-channel cochlear implant(Tong et al., in press; Tong and Clark, 1980). Single-channel implants have also been shown to be of value (House et al., 1976; Fourcin et al., 1979). As the multiple-channel device, however, requires an intra-cochlear electrode array it was considered worthwhile comparing the closed-set spondaic word test results obtained from our patients with those from intra-cochlear single-channel implants (Bilger et al., 1977). Using the multiple-channel device speech was processed by extracting the voicing frequency and energy, and the frequency and energy of the dominant spectral peak in the mid-frequency range. The parameters for voicing determined the rate of stimulation for all electrodes, and the parameters for the dominant spectral peak in the mid-frequency range determined the site of electrode stimulation and current level. On the other hand, with the single-channel implant (House et al., 1976) the speech wave amplitude modulated a 16 kHz carrier frequency, and this in tum stimulated the auditory nerve.
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using open-set CID sentences
    Clark, Graeme M. ; Tong, Yit Chow ; Martin, Lois F. A. ( 1981)
    A multiple-channel cochlear implant and speech processor have been used in two postlingually deaf adult patients with a total hearing loss, to enable them to perceive varying degrees of running speech. The results have been confirmed with open-set CID everyday sentence tests. Using the implant alone, the patients obtained 8% and 14% scores with pre-recorded material, and 34% and 36% scores for "live" presentations. This was equivalent to the perception of 35% of connected discourse. When the implant was used in conjunction with lipreading, improvements of 188% and 386% were obtained over lipreading alone, and the scores were 68% and 98% which were equivalent to the perception of 60% and 95% of connected discourse.
  • Item
    Thumbnail Image
    Multiple-channel cochlear implant
    Clark, Graeme M. ; Tong, Y. C. ; Bailey, Q. R. ( 1981)
    Receiver-stimulator units and multiple electrode arrays were implanted in the scala tympani of one totally deaf patient on 1 August 1978, and one profoundly deaf patient on 17 July 1979. The first patient, a 46 year old male, lost all hearing following a head injury 18 months prior to surgery. Pure tone and speech audiometry showed no hearing in either ear at the maximum output levels of the audiometer, and no vibro tactile responses were elicited. The second patient, a 63 year old male, had a progressive sensorineural hearing loss extended over 30 years due to bomb blast and chronic infection, and had no help from a hearing aide for 13 years prior to surgery. Pure tone audiometry under headphones showed no hearing in the left or operated ear, and in the right he had the following thresholds: 0.125 kHz � 125 db SPL; 0.25 kHz � 115 db SPL and 0.5 kHz � 117 db SPL. There was no speech discrimination in either ear under headphones or in a monitored sound field.
  • Item
    Thumbnail Image
    Multiple-electrode cochlear implant for profound or total hearing loss: a review
    Clark, Graeme M. ; Tong, Y. C. ( 1981)
    Patients who have developed a profound or total hearing loss cannot receive help with a conventional hearing aid. A promising way of restoring usable hearing and helping them communicate, however, is by electrical stimulation of residual auditory nerve fibres. Recently, single electrodes have been used to globally stimulate the auditory nerve, and patients have been helped in distinguishing voiced from unvoiced speech sounds, and in hearing the rhythm and intonation of speech. However, it is generally agreed that, if more speech information is to be conveyed to the patient, a multiple electrode system which selectively stimulates small groups of auditory nerve fibres will be required.