Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    The multi-channel cochlear implant and the relief of severe-to-profound deafness.
    Clark, G (Informa UK Limited, 2012-05)
    This personal reflection outlines the discoveries at the University of Melbourne leading to the multi-channel cochlear implant, and its development industrially by Cochlear Limited. My earlier experimental electrophysiological research demonstrated temporal coding occurred for only low frequencies, i.e. below 200-500 pulses/second. I was able to confirm these findings perceptually in behaviourally conditioned animals. In addition, these studies showed that temporal discrimination occurred across spatial coding channels. These experimental results correlated with the later conscious experience for electrical stimulation in my implant patients. In addition, the mid-to-high frequencies were coded in part by place of stimulation using bipolar and monopolar stimulation to restrict current spread. Furthermore, place of stimulation had the qualities of sharpness and dullness, and was also experienced as vowels. Owing to the limitation in coding speech with a physiological model due to the overlap of electrical current leading to unpredictable variations in loudness, a speech coding strategy that extracted the most important speech features for transmission through an electro-neural 'bottle-neck' to the brain was explored. Our inaugural strategy, discovered in 1978, extracted the second formant for place of stimulation, voicing for rate of stimulation, and sound pressure for current level. This was the first coding strategy to provide open-set speech understanding, as shown by standard audiological tests, and it became the first clinically successful interface between the world and human consciousness. This strategy was improved with place coding for the third formant or high-frequency spectrum, and then the spectral maxima. In 1989, I operated on our first patient to receive a bilateral implant, and in 1990, the first with a bimodal processor. The psychophysics and speech perception for these showed that the stimuli from each side could be fused into a single image, and localized according to differences in intensity and time of arrival of the stimuli. There were significant improvements for speech perception in noise. In 1985, I implanted our first children with the multi-channel prosthesis and found that speech understanding and spoken language were greatly improved the younger the child at surgery, and especially when younger than 12 months. Speech understanding was strongly related to the development of place coding. In 1990, the US Food and Drug Administration approved the implant for deaf children, the first by any world health regulatory body making it the first major advance in helping deaf children to communicate.
  • Item
    Thumbnail Image
    Biocompatibility of Immobilized Aligned Carbon Nanotubes
    Nayagam, DAX ; Williams, RA ; Chen, J ; Magee, KA ; Irwin, J ; Tan, J ; Innis, P ; Leung, RT ; Finch, S ; Williams, CE ; Clark, GM ; Wallace, GG (WILEY-V C H VERLAG GMBH, 2011-04-18)
    In vivo host responses to an electrode-like array of aligned carbon nanotubes (ACNTs) embedded within a biopolymer sheet are reported. This biocompatibility study assesses the suitability of immobilized carbon nanotubes for bionic devices. Inflammatory responses and foreign-body histiocytic reactions are not substantially elevated when compared to negative controls following 12 weeks implantation. A fibrous capsule isolates the implanted ACNTs from the surrounding muscle tissue. Filamentous nanotube fragments are engulfed by macrophages, and globular debris is incorporated into the fibrous capsule with no further reaction. Scattered leukocytes are observed, adherent to the ACNT surface. These data indicate that there is a minimal local foreign-body response to immobilized ACNTs, that detached fragments are phagocytosed into an inert material, and that ACNTs do not attract high levels of surface fouling. Collectively, these results suggest that immobilized nanotube structures should be considered for further investigation as bionic components.
  • Item
    Thumbnail Image
    Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole
    Stewart, EM ; Liu, X ; Clark, GM ; Kapsa, RMI ; Wallace, GG (ELSEVIER SCI LTD, 2012-01)
    We have investigated the application of polypyrrole (pPy) as a material to influence neointimal cell behaviour. The physico-chemical properties of pPy doped with heparin (Hep), para-toluene sulfonate, poly(2-methoxyaniline-5-sulfonic acid) (pMAS) and nitrate ions were studied in addition to cell adhesion and proliferation studies of neointimal relevant cell lines cultured on the pPy substrates. Both smooth muscle (hSMC) and endothelial (hEC) cell types adhered and proliferated best on the smooth, hydrophilic pPy/pMAS material. Moreover, pPy/Hep is able to support the proliferation of hECs on the surface but inhibits hSMC proliferation after 4 days of culture. The inhibitory effect on hSMCs is most likely due to the well-known antiproliferative effect of heparin on hSMC growth. The results presented indicate that surface exposed heparin binds to the putative heparin receptor of hSMCs and is sufficient to inhibit proliferation. The application of galvanostatically synthesized pPy/Hep to stent surfaces presents a novel bioactive control mechanism to control neointimal cell growth.
  • Item
    Thumbnail Image
    Midbrain responses to micro-stimulation of the cochlea using high density thin-film arrays
    Allitt, BJ ; Morgan, SJ ; Bell, S ; Nayagam, DAX ; Arhatari, B ; Clark, GM ; Paolini, AG (ELSEVIER SCIENCE BV, 2012-05)
    A broader activation of auditory nerve fibres than normal using a cochlear implant contributes to poor frequency discrimination. As cochlear implants also deliver a restricted dynamic range, this hinders the ability to segregate sound sources. Better frequency coding and control over amplitude may be achieved by limiting current spread during electrical stimulation of the cochlea and positioning electrodes closer to the modiolus. Thin-film high density microelectrode arrays and conventional platinum ring electrode arrays were used to stimulate the cochlea of urethane-anaesthetized rats and responses compared. Neurophysiological recordings were taken at 197 multi-unit clusters in the central nucleus of the inferior colliculus (CIC), a site that receives direct monaural innervation from the cochlear nucleus. CIC responses to both the platinum ring and high density electrodes were recorded and differences in activity to changes in stimulation intensity, thresholds and frequency coding of neural activation were examined. The high density electrode array elicited less CIC activity at nonspecific frequency regions than the platinum ring electrode array. The high density electrode array produced significantly lower thresholds and larger dynamic ranges than the platinum ring electrode array when positioned close to the modiolus. These results suggest that a higher density of stimulation sites on electrodes that effectively 'aim' current, combined with placement closer to the modiolus would permit finer control over charge delivery. This may equate to improved frequency specific perception and control over amplitude when using future cochlear implant devices.
  • Item
    Thumbnail Image
    Conducting polymers, dual neurotrophins and pulsed electrical stimulation - Dramatic effects on neurite outgrowth
    Thompson, BC ; Richardson, RT ; Moulton, SE ; Evans, AJ ; O'Leary, S ; Clark, GM ; Wallace, GG (ELSEVIER SCIENCE BV, 2010-01-25)
    In this study the synergistic effect of delivering two neurotrophins simultaneously to encourage neuron survival and neurite elongation was explored. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were incorporated into polypyrrole (PPy) during electrosynthesis and the amounts incorporated and released were determined using iodine-125 ((125)I) radio-labelled neurotrophins. Neurite outgrowth from cochlear neural explants grown on the conducting polymer was equivalent to that on tissue culture plastic but significantly improved with the incorporation of NT-3 and BDNF. Neurite outgrowth from explants grown on polymers containing both NT-3 and BDNF showed significant improvement over PPy doped only with NT-3, due to the synergistic effect of both neurotrophins. Neurite outgrowth was significantly improved when the polymer containing both neurotrophins was electrically stimulated. It is envisaged that when applied to the cochlear implant, these conducting and novel polymer films will provide a biocompatible substrate for storage and release of neurotrophins to help protect auditory neurons from degradation after sensorineural hearing loss and encourage neurite outgrowth towards the electrodes.
  • Item
    Thumbnail Image
    Creating conductive structures for cell growth: Growth and alignment of myogenic cell types on polythiophenes
    Breukers, RD ; Gilmore, KJ ; Kita, M ; Wagner, KK ; Higgins, MJ ; Moulton, SE ; Clark, GM ; Officer, DL ; Kapsa, RMI ; Wallace, GG (WILEY-BLACKWELL, 2010-10)
    Conducting polymers provide suitable substrates for the in vitro study of excitable cells, including skeletal muscle cells, due to their inherent conductivity and electroactivity. The thiophene family of conducting polymers offers unique flexibility for tailoring of polymer properties as a result of the ease of functionalization of the parent monomer. This article describes the preparation of films and electrospun fibers from an ester-functionalized organic solvent-soluble polythiophene (poly-octanoic acid 2-thiophen-3-yl-ethyl ester) and details the changes in properties that result from post-polymerization hydrolysis of the ester linkage. The polymer films supported the proliferation and differentiation of both primary and transformed skeletal muscle myoblasts. In addition, aligned electrospun fibers formed from the polymers provided scaffolds for the guided differentiation of linearly aligned primary myotubes, suggesting their suitability as three-dimensional substrates for the in vitro engineering of skeletal muscle tissue.
  • Item
    Thumbnail Image
    Pneumococcal meningitis post-cochlear implantation: preventative measures.
    Wei, BPC ; Shepherd, RK ; Robins-Browne, RM ; Clark, GM ; O'Leary, SJ (Wiley, 2010-11)
    OBJECTIVE: Both clinical data and laboratory studies demonstrated the risk of pneumococcal meningitis post-cochlear implantation. This review examines strategies to prevent post-implant meningitis. DATA SOURCES: Medline/PubMed database; English articles after 1980. Search terms: cochlear implants, pneumococcus meningitis, streptococcus pneumonia, immunization, prevention. REVIEW METHODS: Narrative review. All articles relating to post-implant meningitis without any restriction in study designs were assessed and information extracted. RESULTS: The presence of inner ear trauma as a result of surgical technique or cochlear implant electrode array design was associated with a higher risk of post-implant meningitis. Laboratory data demonstrated the effectiveness of pneumococcal vaccination in preventing meningitis induced via the hematogenous route of infection. Fibrous sealing around the electrode array at the cochleostomy site, and the use of antibiotic-coated electrode array reduced the risk of meningitis induced via an otogenic route. CONCLUSION: The recent scientific data support the U.S. Food and Drug Administration recommendation of pneumococcal vaccination for the prevention of meningitis in implant recipients. Nontraumatic cochlear implant design, surgical technique, and an adequate fibrous seal around the cochleostomy site further reduce the risk of meningitis.
  • Item
    Thumbnail Image
    Pneumococcal meningitis post-cochlear implantation: potential routes of infection and pathophysiology.
    Wei, BPC ; Shepherd, RK ; Robins-Browne, RM ; Clark, GM ; O'Leary, SJ (Wiley, 2010-11)
    OBJECTIVE: This review describes the current concept of pneumococcal meningitis in cochlear implant recipients based on recent laboratory studies. It examines possible routes of Streptococcus pneumoniae infection to the meninges in cochlear implant recipients. It also provides insights into fundamental questions concerning the pathophysiology of pneumococcal meningitis in implant recipients. DATA SOURCES: Medline/PubMed database; English articles after 1960. Search terms: cochlear implants, meningitis, pneumococcus, streptococcus pneumonia. REVIEW METHODS: Narrative review. All articles relating to post-implant meningitis without any restriction in study designs were assessed and information extracted. RESULTS: The incidence of pneumococcal meningitis in cochlear implant recipients is greater than that of an age-matched cohort in the general population. Based on the current clinical literature, it is difficult to determine whether cochlear implantation per se increases the risk of meningitis in subjects with no existing risk factors for acquiring the disease. As this question cannot be answered in humans, the study of implant-related infection must involve the use of laboratory animals in order for the research findings to be applicable to a clinical situation. The laboratory research demonstrated the routes of infection and the effects of the cochlear implant in lowering the threshold for pneumococcal meningitis. CONCLUSION: The laboratory data complement the existing clinical data on the risk of pneumococcal meningitis post-cochlear implantation.