Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 33
  • Item
    Thumbnail Image
    The effect of language knowledge on speech perception: what are we really assessing?
    Sarant, Julia Z. ; Blamey, Peter J. ; Cowan, Robert S. ; Clark, Graeme M. ( 1997)
    Objective: The authors examined whether open-set speech perception scores are limited by knowledge of vocabulary and syntax and further considered whether remediation of vocabulary and syntax will increase open-set speech perception scores. Study Design: This was a repeated-measures study design in the setting of a primary (elementary) school for the hearing impaired. Patients: The study population was composed of three hearing-impaired children using Nucleus 22-channel cochlear implant. Intervention: Intervention used was language remediation sessions. Main Outcome Measures: The main outcome measures were assessment of auditory-alone speech perception benefit using open-set words and sentences and assessment of syntactic knowledge using the Test of Syntactic Ability. Outcome measures were applied before and after remediation. Results: Child 1 and child 2 showed a significant postremediation improvement in their overall scores on the Test of Syntactic Ability and in their ability to perceive words learned during remediation. Child I and child 2 also showed a significant improvement in their scores on a modified Bamford-Kowal-Bench open-set sentence test, which specifically targeted grammatical constructs trained in remediation sessions. Conclusions: Remediation of language knowledge deficits significantly improved open-set speech perception for two children, suggesting a need to include language remediation in cochlear implant habilitation programs.
  • Item
    Thumbnail Image
    A comparison of Tactaid II+ and Tactaid 7 use by adults with a profound hearing impairment
    Galvin, Karyn L. ; Mavrias, Gina ; Moore, Alessandra ; Cowan, Robert S. C. ; Blamery, Peter J. ; Clark, Graeme M. ( 1999)
    Objective: To evaluate and compare use of the Tactaid II+ and the Tactaid 7, in terms of speech perception, by adults with a hearing impairment. Design: Eight adults used one device daily for approximately 10 wk and attended seven training sessions. Performance was measured with tests of phonetic contrast perception, closed-set vowel and consonant identification, word and phoneme recognition in monosyllabic word lists, word recognition in sentences and speechtracking rate. A questionnaire was also administered. The protocol was repeated with the alternative device. Results: With each device, the group discriminated most phonetic contrasts at better-than-chance levels and demonstrated somewhat enhanced visual or auditory-visual perception when measured in terms of vowel identification, monosyllabic word recognition and speechtracking rate. An increase in speechtracking rate was also demonstrated for some individuals. Subjects generally reported little subjective improvement in speech perception and production, but were satisfied with the physical attributes of each device. Five of six subjects preferred the Tactaid 7. Conclusions: The Tactaid II+ and the Tactaid 7 provided suprasegmental and segmental information, enabling the group to discriminate phonetic contrasts and improve their perception of some speech materials. No consistent advantage was found for either device, thought most subjects preferred the Tactaid 7. Alternatives likely to provide a greater benefit to communication should be considered before Tactaid fitting.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Within-subject comparison of speech perception benefits with a multiple-channel cochlear implant and tactile device
    Sarant, J. Z. ; Cowan, R. S. C. ; Blamey, P. J. ; Galvin, K. L. ; Clark, Graeme M. ( 1995)
    In order to adequately advise prospective cochlear implant patients and their families, a clinician must have a good knowledge of the potential for particular individuals to benefit from cochlear implants and other alternatives.
  • Item
    Thumbnail Image
    Speech self-monitoring by children using an electrotactile speech processor
    Galvin, K. L. ; Cowan, R. S. C. ; Sarant, J. Z. ; Tobey, E. A. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    For the profoundly and severely-to-profoundly hearing impaired child, lipreading and hearing aids are not always sufficient to develop adequate speech perception and production skills. Tactile devices have been investigated as a source of supplementary speech information, with most research focusing on speech perception benefits. However, speech production difficulties are also a major issue for these children, and research into tactile devices should include investigation of the option to use them as speech production aids. This paper will present the results from an initial examination of the suitability of one tactile device for speech production monitoring.
  • Item
    Thumbnail Image
    Improved electrotactile speech processor: Tickle Talker
    Cowan, R. S. C. ; Galvin, K. L. ; Sarant, J. Z. ; Millard, R. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    The Tickle Talker, an eight-channel electrotactile speech processor, has been developed from continuing research at the University of Melbourne. 'The development of the device has focused on production of reliable speech-processing hardware, design of cosmetically and ergonometrically acceptable electrode transducers, implementation of acute and chronic biomedical studies demonstrating device safety, design and testing of alternative speech-encoding strategies to provide benefit to speech perception and production, and design and testing of appropriate training methods for optimizing benefits. The Tickle Talker has been shown to provide benefits in supplementing lipreading or aided residual hearing for hearing-impaired adults and children. Improvements in speech processing have resulted in an increase in benefits to speech perception, and open the way for more flexible approaches to encoding speech input. Continuing development of the electrode circuitry has now produced a device that is robust and has an extended battery life. Safety studies have clearly demonstrated that there are no long-term contraindications to device use. The results suggest that the device has a role to play in rehabilitation programs for severely and profoundly hearing-impaired adults and children.
  • Item
    Thumbnail Image
    Signal processing for multichannel cochlear implants: past, present and future [Abstract]
    DOWELL, RICHARD ; SELIGMAN, PETER ; MCDERMOTT, HUGH ; Whitford, Lesley ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    Since the late 1970's, many groups have worked on developing effective signal processing for multichannel cochlear implants. The main aim of such schemes has been to provide the best possible speech perception for those using the device. Secondary aims of providing awareness and discrimination of environmental sounds and appreciation of music have also been considered. Early designs included some that attempted to simulate the normal cochlea. The application of such complex processing schemes was limited by the technology of the times. In some cases, researchers reverted to the use of single channel systems which could be controlled reliably with the existing technology. In other cases, as with the Australian implant, a simple multichannel processing scheme was devised that allowed a reliable implementation with available electronics. Over the next 15 years, largely due to the improvements in integrated circuit technology, the signal processors have slowly become more complex. Further psychophysical research has shown how additional information can be transferred effectively to implant users via electrical stimulation of the cochlea. This has lead to rapid improvement in the speech perception abilities of adults using cochlear implants. Some of the main developments in signal processing over the last 15 years will be discussed along with the latest speech perception results obtained with the new SPEAK processing scheme for the Australian 22-channel cochlear implant. Initial results for SPEAK show mean scores of 70% (equivalent to 85-90% phoneme scores) for open set monosyllabic word testing for experienced adult users. Although there remains a large range of performance for all users of cochlear implants, average speech perception scores for all implanted adults have also improved significantly with the developments in signal processing. It appears likely that multichannel cochlear implants will be a viable alternative for the treatment of severe hearing loss in the future.
  • Item
    Thumbnail Image
    A clinical report on vocabulary skills in cochlear implant users [Abstract]
    Dawson, P. ; Blamey, P. ; Dettman, S. ; Rowland, L. ; Barker, E. ; Cowan, R. ; Clark, Graeme M. ( 1994)
    Receptive vocabulary results are reported for 32 children, adolescents and prelinguistically deafened adults implanted with the 22-electrode cochlear implant at the Melbourne Cochlear Implant Clinic. Age at implantation ranged from 2 years, 6 months to 20 years and implant use ranged from 1 year to 7 years, 8 months. There were significant gains from pre- to postoperative assessments on the Peabody Picture Vocabulary Test (PPVT) for the majority of subjects. Rates of improvement found are compatible with previous reports on smaller numbers of implant users, but cannot be attributable unambiguously to use of the implant. The group postoperative performance was significantly higher than mean preoperative performance (n =25). The relationship of variables such as duration of implant use, duration of profound deafness and speech perception ability to improvement on the PPVT is discussed. Expressive vocabulary results on the Renfrew Word Finding Vocabulary Scale are reported for 11 of the subjects. Less substantial gains were made on this measure.
  • Item
    Thumbnail Image
    Issues in long-term management of children with cochlear implants and tactile devices [Abstract]
    COWAN, ROBERT ; DOWELL, RICHARD ; Barker, Elizabeth ; GALVIN, KARYN ; DETTMAN, SHANI ; SARANT, JULIA ; RANCE, GARY ; Hollow, Rod ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    For many children with severe and profound hearing losses, conventional hearing aids are unable to provide sufficient amplification to ensure good oral communication and/or in the case of very young children, development of speech and language. Traditionally a number of these children have opted for the use of sign language alone or in Total Communication approaches as a primary means of communication. The advent of multiple channel cochlear implants for children and the continuing development of multiple channel speech processing tactile devices provide auditory approaches to resolving communication difficulties for these children. The successful use of such devices depends on a number of factors including the information provided through the aid; the ease of use, convenience and reliability of the aid; the individual communication needs of the child; and the habilitation and management program used with the device. Long-term data has shown that children continue to show increased speech perception benefits from improvements in speech processing and from further experience with these devices. Habilitation and management programs must therefore be geared to meet the changing needs of children as they progress and of families as children mature and face new challenges. Habilitation must address specific individual needs in speech perception and in speech production. For very young children, benefits of improved speech perception should have an impact on the development of speech and language, and habilitation and management must emphasise the need for language growth.