Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    A comparison of a new prototype Tickle Talker with a Tactaid 7
    Galvin, Karyn L. ; Ginis, Jan ; Cowan, Robert S. C. ; Blamey, Peter J. ; Clark, Graeme M. ( 2001)
    This study compared the speech perception enhancement provided by two multichannel tactile aids: a new version of the Tickle TalkerT™ and the Tactaid 7. The subjects' impression of benefit was also examined. In an AB pattern, six adults with hearing impairment used each device daily for approximately 18 weeks and attended 12 training sessions. When tactile information was provided, the group demonstrated a significant enhancement for the perception of words (mean 17.2%) and phonemes (mean 12.9%) in monosyllabic word lists, words in sentences (mean 14.2%) and speech tracking (mean 7.7 wpm). The Tactaid 7 provided a significantly greater enhancement for the perception of words (21 % versus 13.4%), phonemes (16.7% versus 9.1%) and some speech features in monosyllabic word lists. Subjective ratings were slightly higher for the Tactaid 7, and four subjects preferred this device. Either device may be suitable for those not able or willing to have a cochlear implant.
  • Item
    Thumbnail Image
    Generalisation of tactile perceptual skills to new context following tactile-alone word recognition training with the Tickle Talker
    Galvin, Karyn L. ; Blamey, Peter J. ; Cowan, Robert S. C. ; Oerlemans, Michael ; Clark, Graeme M. ( 2000)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Acquisition of a tactile-alone vocabulary by normally hearing users of the Tickle Talker
    Galvin, Karyn L. ; Blamey, Peter J. ; Oerlemans, Michael ; Cowan, Robert S. C. ; Clark, Graeme M. ( 1999)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Design fundamentals for electrotactile devices: the Tickle Talker case study
    Cowan, Robert S. C. ; Galvin, Karyn L. ; Blamey, Peter J. ; Sarant, Julia Z. (Whurr, 1995)
    Since the work of Gault in the 1920s, the literature has chronicled the development of numerous tactile devices for use by the hearing impaired in improving communication. Devices have been developed to target improvements in both speech perception and speech production. In each development, the inventors have attempted to encode speech information through stimulation of the intact kinaesthetic system of the individual, as a supplement or replacement for speech input available from the damaged auditory pathway.
  • Item
    Thumbnail Image
    Articulation accuracy of children using an electrotactile speech processor
    Galvin, Karyn L. ; Cowan, Robert S. C. ; Sarant, Julia Z. ; Tobey, Emily A. ; Blamey, Peter J. ; Clark, Graeme M. ( 1995)
    Objective: Use of wearable tactile speech perception devices is suggested to help overcome the difficulties in speech production resulting from severe and profound hearing impairment in children. This suggestion is based on the assumption that subjects can use tactile input in isolation, or in combination with information from residual aided hearing, to monitor and modify their speech. The present study evaluated the benefits to articulation provided through use of a multichannel electrotactile device (“Tickle Talker™”). Design: Six profoundly hearing-impaired children were videotaped speaking with the Tickle Talker on and with the Tickle Talker off during conversations with their audiologist. Five of the subjects also wore their binaural hearing aids during all recorded conversations. The number of vowels, consonants, and overall phonemes correctly articulated by each child in the two conditions were compared. Results: One subject improved articulation of initial consonants and initial phonemes; one subject improved articulation of total vowels, total consonants, initial consonants, total phonemes, and initial phonemes; and a third subject improved articulation of total vowels and medial phonemes. Conclusions: Use of on-line tactile feedback from the Tickle Talker may benefit the articulation accuracy of some children, and the device may therefore be suitable to use with children who have not responded to more traditional speech training techniques.
  • Item
    Thumbnail Image
    Improved electrotactile speech processor: Tickle Talker
    Cowan, R. S. C. ; Galvin, K. L. ; Sarant, J. Z. ; Millard, R. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    The Tickle Talker, an eight-channel electrotactile speech processor, has been developed from continuing research at the University of Melbourne. 'The development of the device has focused on production of reliable speech-processing hardware, design of cosmetically and ergonometrically acceptable electrode transducers, implementation of acute and chronic biomedical studies demonstrating device safety, design and testing of alternative speech-encoding strategies to provide benefit to speech perception and production, and design and testing of appropriate training methods for optimizing benefits. The Tickle Talker has been shown to provide benefits in supplementing lipreading or aided residual hearing for hearing-impaired adults and children. Improvements in speech processing have resulted in an increase in benefits to speech perception, and open the way for more flexible approaches to encoding speech input. Continuing development of the electrode circuitry has now produced a device that is robust and has an extended battery life. Safety studies have clearly demonstrated that there are no long-term contraindications to device use. The results suggest that the device has a role to play in rehabilitation programs for severely and profoundly hearing-impaired adults and children.
  • Item
    Thumbnail Image
    A review of the biological, psychophysical, and speech processing principles used to design the tickle talker
    Blamey, P. J. ; Cowan, R. S. C. ; Alcantara, J. I. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Clark, Graeme M. ( 1992)
    The Tickle Talker is a wearable electrotactile speech processor, designed to be used by profoundly hearing-impaired children and adults in conjunction with lipreading and residual hearing. The effectiveness of such a device is affected by an interaction between biological, human engineering, psychophysical, and speech processing considerations. The requirements, the design principles, and the performance of the Tickle Talker in each of these areas will be discussed. Electrical stimulation of the nerve bundles lying along the sides of the fingers was chosen to provide safe, comfortable, energy-efficient stimulation of a well-organised and sensitive part of the tactile sensory system. This is achieved at a small cost to the appearance and mobility of one hand when using the Tickle Talker. The biphasic pulse waveform used to stimulate the nerve bundles has been chosen to ensure a biologically safe stimulus. The electrical parameters (pulse duration, pulse rate, and electrode position) that are used to encode speech information are varied within ranges that are matched to the characteristics of the tactile sense. The usable ranges and information-carrying potential of each of these parameters have been assessed in psychophysical experiments. A comparison of these results with similar experimental data for cochlear implant and hearing aid users is instructive in assessing the possible limitations of tactile and auditory speech processors. The results discussed will include the discrimination and identification of stimuli differing in intensity, duration and pulse rate; the identification of different spatial patterns of stimulation, and the detection of gaps in stimuli. In most respects, the tactile results are similar to the corresponding auditory measures. The resolution of temporal differences such as pulse rate discrimination or gap detection are generally not as good as in the auditory case, but may be as good or better than the corresponding results for some profoundly hearing-impaired individuals. The speech processor used in the Tickle Talker is a "feature extraction" device that explicitly estimates the second formant frequency, amplitude envelope, and fundamental frequency of the voice and encodes them in terms of electrode position, pulse width and pulse rate of the electrical stimulation pattern. Consideration of the psychophysical results and the speech information available from these parameters allows optimization of the Tickle Talker's operation and a broad estimation of its potential performance in speech discrimination. The perception of duration and place of articulation (front/back) of vowels, and the manner and voicing of consonants are expected to be improved by the Tickle Talker. Prosodic variations conveyed by pulse rate are expected to be perceived by some users, but not all. High frequency consonants such as: /s/,/z/./?/, and /t?/ are encoded in a particularly salient manner by the Tickle Talker.
  • Item
    Thumbnail Image
    Design fundamentals for a tactile speech processor: i) encoding of speech information, and ii) biomedical safety considerations [Abstract]
    Cowan, Robert S. C. ; Blamey, Peter J. ; Sarant, Julia Z. ; Galvin, Karyn L. ; Clark, Graeme M. ( 1992)
    Approaches to providing speech information through the tactual modality have varied in: number and spatial location of transducers; method of interfacing with the skin's sensory apparatus; and content of speech information presented. Use of a multiple speech feature encoding approach to design of a tactile device was implemented in the wearable multichannel electrotactile speech processor or Tickle Talker developed at the University of Melbourne. Psychophysical studies established that subjects could discriminate salient electrical parameters in the tactual display, and that this information could be used to discriminate acoustic speech feature contrasts. Results with normally-hearing and hearing-impaired adults and children using an FOF2 encoding strategy showed improved discrimination scores for closed-set speech feature discrimination batteries, closed-set vowel and consonant identification tasks, as well as for open-set word and sentence comprehension. Based on analyses of tactual encoding of speech features, alternative speech processing strategies designed to increase the quality of speech information available were evaluated. Results for two hearing-impaired adults showed improved feature discrimination with the addition of a voicing signal to the FOF2 strategy. Biomedical safety investigations conducted concurrently have established that the electrical parameters of the stimulus waveform, electrode handset design, and electrical circuitry of the device are free from potential risks. Longer-term physiological assessments included measures of possible effects of electrical stimulation on tactual sensitivity, finger temperature, finger and hand blood flow, electrical thresholds and maximum comfortable levels, and on central nervous system, function as measured by EEG. Results of the kinesthetic, vascular and neurological assessments showed no significant contraindications which might limit application or long-term use of the device.
  • Item
    Thumbnail Image
    Clinical experience with the University of Melbourne multichannel electrotactile speech processor (Tickle Talker)
    Cowan, Robert S. C. ; Blamey, Peter J. ; Sarant, J. Z. ; Galvin, K. L. ; Alcantara, J. I. ; Whitford, Lesley A. ; Clark, Graeme M. ( 1992)
    The Tickle Talker is a multiple channel electrotactile speech processor, developed for use by profoundly hearing-impaired adults and children. The device is intended to be used in combination with lipreading and aided residual hearing, to assist the greatest potential range of users. Sound detection and speech reception threshold levels for a group of 14 congenitally hearing-impaired children were shown to be lower when using the Tickle Talker than for hearing aids across the speech frequency range. Tactile-alone feature contrast testing with adults demonstrated that both segmental and suprasegmental speech feature information was available from the tactual display presented by the Tickle Talker. Clinical results from an ongoing program involving fourteen hearing-impaired children demonstrate benefits in speech perception achieved through use of the Tickle Talker. The children have a range of degree of hearing impairment and educational setting. Results show improvements in discrimination scores for vowel and consonant speech features, and increased scores for recognition of closed-set words and for open-set words and sentences. In addition, anecdotal evidence indicates changes in speech production which may be attributed to perceptual input from the device (both from perception of other speakers, and from voice self-monitoring). Results from a group of 4 adult patients show that tactile input may be effectively combined with either aided residual hearing, or aided residual hearing and lipreading to improve speech discrimination across a similar range of closed and open-set word and sentence tests and on speech tracking. The results indicate that some specific tailoring of the speech information provided through the device for the needs of users with differing degrees of hearing-impairment may be required to optimize potential benefits to speech discrimination.
  • Item
    Thumbnail Image
    Safety studies with the University of Melbourne multichannel electrotactile speech processor
    Cowan, Robert S. C. ; Blamey, Peter J. ; Alcantara, Joseph I. ; Blombery, Peter A. ; Hopkins, Ian J. ; Whitford, Lesley A. ; Clark, Graeme M. ( 1992)
    Results of safety investigations conducted as an integral part of the development of a multichannel electrotactile speech processor (Tickle Talker™) are reported. Electrical parameters of the stimulus waveform, design of the electrode handset and cabling, and the electrical circuitry of the speech processor/stimulator and programming interface have been analysed for potential risks. Constant current biphasic square pulses delivered to electrodes positioned on the skin surface over the digital nerve bundles were chosen to optimize the safety, comfort, and function of the electrotactile stimulus. The device was battery-powered, and the user circuit was isolated from earth-referenced sources. Each electrode was isolated by capacitive coupling, preventing DC leakage of current to the user circuit. Studies of finger temperature showed slight cooling of the skin on the fingers of both stimulated and unstimulated hands for individual subjects following electrotactile stimulation through the Tickle Talker. Subsequent analysis of finger and hand vascular circulation in five subjects showed slight reductions in hand blood flow in some individuals. The results did not demonstrate a significant mean decrease in hand or finger blood flow following electrotactile stimulation. No evidence of sympathetic involvement was found, nor were any changes in vascular structure of the hand such as those associated with Raynaud's disease found. Evidence suggests that the decrease in temperature found in the initial study may be due to a change in the ratio of blood flow between arteriovenous anastomoses and nutritive capillary beds. Studies of: 1) changes in mean threshold and comfortable pulse widths over time; and, 2) changes in tactual sensitivity as measured by hot/cold, sharp/dull, and two-point difference limen discrimination, did not detect any systematic change in peripheral nervous system function following electrotactile stimulation. Analysis of electroencephalogram (EEG) recordings taken during electrotactile stimulation, and after relatively long periods of experience with the device did not show any pathological changes which might be associated with epileptic foci. In summary, no contraindications to long-term use of the Tickle Talker were detected in the studies performed.