Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Speech perception in children using cochlear implants: prediction of long-term outcomes.
    Dowell, RC ; Dettman, SJ ; Blamey, PJ ; Barker, EJ ; Clark, GM (Informa UK Limited, 2002-03)
    A group of 102 children using the Nucleus multichannel cochlear implant were assessed for open-set speech perception abilities at six-monthly intervals following implant surgery. The group included a wide range of ages, types of hearing loss, ages at onset of hearing loss, experience with implant use and communication modes. Multivariate analysis indicated that a shorter duration of profound hearing loss, later onset of profound hearing loss, exclusively oral/aural communication and greater experience with the implant were associated with better open-set speech perception. Developmental delay was associated with poorer speech perception and the SPEAK signal coding scheme was shown to provide better speech perception performance than previous signal processors. Results indicated that postoperative speech perception outcomes could be predicted with an accuracy that is clinically useful.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Signal processing for multichannel cochlear implants: past, present and future [Abstract]
    DOWELL, RICHARD ; SELIGMAN, PETER ; MCDERMOTT, HUGH ; Whitford, Lesley ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    Since the late 1970's, many groups have worked on developing effective signal processing for multichannel cochlear implants. The main aim of such schemes has been to provide the best possible speech perception for those using the device. Secondary aims of providing awareness and discrimination of environmental sounds and appreciation of music have also been considered. Early designs included some that attempted to simulate the normal cochlea. The application of such complex processing schemes was limited by the technology of the times. In some cases, researchers reverted to the use of single channel systems which could be controlled reliably with the existing technology. In other cases, as with the Australian implant, a simple multichannel processing scheme was devised that allowed a reliable implementation with available electronics. Over the next 15 years, largely due to the improvements in integrated circuit technology, the signal processors have slowly become more complex. Further psychophysical research has shown how additional information can be transferred effectively to implant users via electrical stimulation of the cochlea. This has lead to rapid improvement in the speech perception abilities of adults using cochlear implants. Some of the main developments in signal processing over the last 15 years will be discussed along with the latest speech perception results obtained with the new SPEAK processing scheme for the Australian 22-channel cochlear implant. Initial results for SPEAK show mean scores of 70% (equivalent to 85-90% phoneme scores) for open set monosyllabic word testing for experienced adult users. Although there remains a large range of performance for all users of cochlear implants, average speech perception scores for all implanted adults have also improved significantly with the developments in signal processing. It appears likely that multichannel cochlear implants will be a viable alternative for the treatment of severe hearing loss in the future.
  • Item
    Thumbnail Image
    Issues in long-term management of children with cochlear implants and tactile devices [Abstract]
    COWAN, ROBERT ; DOWELL, RICHARD ; Barker, Elizabeth ; GALVIN, KARYN ; DETTMAN, SHANI ; SARANT, JULIA ; RANCE, GARY ; Hollow, Rod ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    For many children with severe and profound hearing losses, conventional hearing aids are unable to provide sufficient amplification to ensure good oral communication and/or in the case of very young children, development of speech and language. Traditionally a number of these children have opted for the use of sign language alone or in Total Communication approaches as a primary means of communication. The advent of multiple channel cochlear implants for children and the continuing development of multiple channel speech processing tactile devices provide auditory approaches to resolving communication difficulties for these children. The successful use of such devices depends on a number of factors including the information provided through the aid; the ease of use, convenience and reliability of the aid; the individual communication needs of the child; and the habilitation and management program used with the device. Long-term data has shown that children continue to show increased speech perception benefits from improvements in speech processing and from further experience with these devices. Habilitation and management programs must therefore be geared to meet the changing needs of children as they progress and of families as children mature and face new challenges. Habilitation must address specific individual needs in speech perception and in speech production. For very young children, benefits of improved speech perception should have an impact on the development of speech and language, and habilitation and management must emphasise the need for language growth.
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam. W ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Pty Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11 to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam W. ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Ply Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.
  • Item
    Thumbnail Image
    The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient: correlation with psychophysics and speech perception results
    Clark, Graeme M. ; Shepherd, Robert K. ; Franz, Burkhard K.-H. ; Dowell, Richard C. ; Tong, Yit C. ; Blamey, Peter J. ; Webb, Robert L. ; Pyman, Brian C. ; McNaughton, Judy ; Bloom, David M. ; Kakulas, Byron A. ; Siejka, Stan ( 1988)
    Cochlear implantation has become a recognised surgical procedure for the management of a profound-total hearing loss, especially in patients who have previously had hearing before going deaf (postlingual deafness). Nevertheless, it is important for progress in the field that patients who have had a cochlear implant, bequeath their temporal bones for research. This will then make it possible to further assess the safety of the procedure, and the factors that are important for its effectiveness. Biological safety has been assessed in a number of studies on animals, in particular, the biocompatibility of the materials used (1,2), the histopathological effects of long-term implantation on the cochlea (3, 4, 5, 6, 7, 8), and the effects of chronic electrical stimulation on the viability of spiral ganglion cells (9, 10, 11, 12). In studying the temporal bones of deceased cochlear implant patients it is possible to help establish that the animal experimental results are applicable to Man. Surgical trauma has been most frequently evaluated by inserting electrodes into cadaver temporal bones. It is important, however, to examine bones that have been previously implanted surgically to ensure that the cadaver findings are applicable to operations on patients. The effectiveness of cochlear implantation can be studied by correlating the histopathological findings, the dendrite and spiral ganglion cell densities, in particular, with the psychophysical and speech perception results. Other benefits also accrue, for example, establishing the accuracy of preoperative X-rays and electrical stimulation of the promontory in predicting cochlear pathology and spiral ganglion cell numbers. For the above reasons it has been especially interesting to examine both the temporal bones and central nervous system from one of our patients (patient 13) who participated in the initial clinical trial of the Cochlear Proprietary Limited (a member of the Nucleus group) multiple-electrode cochlear prosthesis, and who died due to a myocardial infarction following coronary bypass surgery.
  • Item
    Thumbnail Image
    The University of Melbourne/Nucleus cochlear prosthesis
    Clark, Graeme M. ; Blamey, P. J. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Franz, B. K-H. ; Millar, J. B. ; Pyman, B. C. ; Shepherd, R. K. ; Tong, Y. C. ; Webb, R. L. ; Brimacombe, J. A. ; Hirshorn, M. S. ; Kuzma, J. ; Mecklenburg, D. J. ; Money, D. K. ; Patrick, J. F. ; Seligman, P. M. ( 1988)
    This is a review of research to develop the University of Melbourne/Nucleus cochlear prosthesis for patients with a profound-total hearing loss. A more complete review can be obtained in Clark et al. A prototype receiver-stimulator and multiple-electrode array developed at the University of Melbourne was first implanted in a postlingually deaf adult patient with a profound-total hearing loss on 1 August 1978. A speech processing strategy which could help this patient understand running speech, especially when combined with lipreading was developed in 1978 following initial psychophysical studies. A prototype wearable speech processor was fabricated in 1979, that could provide significant help for the first two patients in understanding running speech when used in combination with lipreading compared with lipreading alone, and it also enabled them to understand some running speech when using electrical stimulation alone. An implantable receiver-stimulator and wearable speech processor embodying the principles of the prototype devices were then produced for clinical trial by the Australian biomedical firm, Nucleus Ltd, and its subsidiaries, Cochlear Pty Ltd and Cochlear Corporation. This cochlear implant was initially clinically trialled on six patients at The Royal Victorian Eye & Ear Hospital in 1982, and shown to give similar results to those obtained with the prototype device. In view of these findings a clinical trial was carried out for a Premarket Approval Application to the US Food and Drug Administration (FDA), and extended to a number of centres in the US, Canada, and West Germany. This clinical trial confirmed that patients could understand running speech when electrical stimulation was combined with lipreading, and that some patients could also understand running speech when using electrical stimulation alone. Today, more than 600 patients world-wide are using cochlear implants developed from the research described in this paper.
  • Item
    Thumbnail Image
    Educational assessment and management of children with multichannel cochlear implants
    Nienhuys, T. G. ; Musgrave, G. N. ; Busby, P. A. ; Blamey, P. J. ; Nott, P. ; Tong, Y. C. ; Dowell, R. C. ; Brown, L. F. ; Clark, Graeme M. ( 1987)
    This paper describes the assessment and training program to evaluate speech, language, and communication skills of profoundly deaf children during and after training. Two sensory aids/prostheses are used: hearing aids and the Nucleus multichannel cochlear implant. Using a single-subject time-series experimental design, children's speech, language, and communication skills are assessed. For speech skills, assessment includes formal tests of articulation and intelligibility, syllable stress and process analyses, analyses of suprasegmental features, and voice quality. For general communication abilities, conversational skills with different speakers, story production skills, comprehension and expression of procedural information, discourse skills, and a measure of conversational interaction skills (pragmatics) are analyzed at regular intervals. Regular observations also sample the subjects' mode and frequency of interactions with individuals and groups in the school and home setting. Normative tests and formal analyses of language samples are also used to assess the overall language age of the child, vocabulary size, and kinds of expressive and receptive, syntactic, and semantic ability.
  • Item
    Thumbnail Image
    Preliminary results for the Cochlear Corporation multielectrode intracochlear implant in six prelingually deaf patients
    Clark, Graeme M. ; Busby, Peter A. ; Roberts, Susan A. ; Dowell, Richard C. ; Blamey, Peter J. ; Mecklenburg, Dianne J. ; Webb, Robert L. ; Pyman, Brian C. ; Franz, Burkhard K. ( 1987)
    The preliminary results from this study indicate that some prelingually deaf patients may get worthwhile help from a multiple-electrode cochlear implant that uses a formant-based speech processing strategy. It is encouraging that these improvements can occur in young adults and teenagers. The results for two children are also encouraging. A 10-year-old child obtained significant improvement on some speech perception tests. It was easy to set thresholds and comfortable listening levels on a 5-year-old child, and he is now a regular user of the device. There are, however, considerable variations in performance among the prelingual patients, which may be related to the following factors: whether they have had some hearing after birth, the method of education used, the motivation of the patient, and age at implantation.