Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    Studies of prosody perception by cochlear implant patients
    Richardson, Louise M. ; Busby, Peter A. ; Blamey, Peter J. ; Clark, Graeme M. ( 1998)
    Prosodic information is conveyed to normally-hearing listeners by variations in acoustic fundamental frequency, amplitude envelope, and duration of speech segments. This study measured cochlear implant patients' sensitivity to these parameters in electrically coded speech. The psychophysical discrimination of electric parameters used to code prosodic information, were examined, together with prosody perception using speech processing strategies which modified the contributions of these parameters. Patients were implanted with the Cochlear Limited prosthesis and used the MPEAK speech processing strategy. In the psychophysical studies, difference limens were measured for steady-state and time-varying stimuli, of different pulse rates and pulse durations, over a series of different stimulus durations. These limens were obtained using an adaptive procedure which converged on the 50 per cent correct point. In the prosody perception studies, performance was measured for the MPEAK strategy and for strategies which modified the contributions of pulse rate and pulse duration. Data were collected for five tests of prosodic contrasts. Difference limens for steady-state pulse rates were larger at higher rates (17 per cent at 400 pulses/s) than at lower rates (6 per cent at 100 pulses/s). For some patients, limens for the time-varying pulse rates were larger than those for the steady-state pulse rates while for the other patients, the limens were similar. Difference limens for pulse duration were 0.3 dB, corresponding to 4 per cent of the dynamic range, for steady-state stimuli and doubled in size for the time-varying stimuli. Prosody perception performance was generally poorer for the modified strategies than for the MPEAK strategy, suggesting that the removal of information coded by pulse rate and pulse duration reduced the perception of prosodic contrasts.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Combined cochlear implant and speech processing hearing aid for implant users with a severe to profound hearing loss in the contralateral ear [Abstract]
    BLAMEY, PETER ; Parisi, Elvira ; Dooley, Gary ( 1994)
    The bimodal device was developed for cochlear implant users who simultaneously wear a hearing aid in the opposite ear having residual hearing of a severe to profound degree. The aim was to create a single device to provide both input signals in a more compatible manner and thus maximise use of the individual's total hearing capabilities. The acoustic component of the bimodal device is very flexible and can implement various speech processing strategies with speed, ease and precision. The Frequency Response Tailoring strategy utilises three filters to fit a frequency gain curve to within 1-2 dB of that desired. Modifications at discrete frequencies, ranges or slopes can be readily made. The Peak Sharpening or Spectral Enhancement strategy amplifies the formant peaks in speech for potential improvement of formant resolution and speech perception in the presence of background noise. The Resynthesis strategy presents specifically selected components of speech in selected combinations and includes the ability to transpose higher frequency information to lower frequency ranges for individuals with no aidable high frequency hearing levels. Different fits can be quickly and easily interchanged for comparison and evaluation and subsequent modifications indicated can be readily effected. Any combination of acoustic and implant speech processing strategy can be presented to optimise speech perception for the individual user.
  • Item
    Thumbnail Image
    Pitch perception for different modes of stimulation using the Cochlear multiple-electrode prosthesis
    Busby, P. A. ; Whitford, L. A. ; Blamey, P. J. ; Richardson, L. M. ; Clark, Graeme M. ( 1994)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    A "Combionic Aid": Combined speech processing for a cochlear implant in one ear and speech processing hearing aid in the other ear [Abstract]
    Dooley, Gary J. ; Blamey, Peter J. ; Seligman, Peter M. ; Clark, Graeme M. ( 1993)
    Independent use of a cochlear implant in one ear and a hearing aid in the other is not acceptable for many implant users with some residual hearing. Psychophysical evidence suggests that there are substantial interactions between acoustic and electrical signals including masking and loudness summation. These effects may contribute to the difficulty in using two independent devices and it is desirable to control the parameters of the electrical and acoustical signals far more accurately than is possible with two independent devices with separate microphones. In order to achieve this control we have developed a Combionic aid incorporating an implant and an 'in1planlcompatible' hearing aid controlled from the same speech processor. The new processor is particularly flexible and can implement a wide variety of speech processing strategies for combined acoustic and electrical stimulation. A benchtop prototype has been tested with five patients using a range of different speech tests. In general, patients do better when they use acoustic and electrical information simultaneously than they do with either alone. Some patients on some tests perform significantly better with the bimodal aid than they do with independent hearing aids and implant processors worn together. Wearable devices have now been built and evaluations of these devices are continuing.
  • Item
    Thumbnail Image
    Combined electrical and acoustical stimulation using a bimodal prosthesis
    Dooley, Gary J. ; Blamey, Peter J. ; Seligman, Peter M. ; Alcantara, Joseph I. ; Clark, Graeme M. ; Shallop, Jon K. ; Arndt, Patti ; Heller, James W. ; Menapace, Christine M. ( 1993)
    A new device incorporating a cochlear implant speech processor and a speech-processing hearing aid for the un-implanted ear has been designed and tested with four severely hearing-impaired patients. The aim of the device is to provide a more acceptable and effective combination of electrical and acoustic signals to the two ears. When used monaurally, and binaurally in conjunction with the cochlear implant, the speech-processing hearing aid mean scores for open-set sentences, words, and consonants were as good as or better than the mean scores for the patients' own conventional hearing aids. Some patients improved much more than did others. Although not conclusive, these results are encouraging, especially as they were achieved with a laboratory prototype that did not allow the patients to become accustomed to the processor in everyday situations.
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam W. ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Ply Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.
  • Item
    Thumbnail Image
    Results in children using the 22 electrode cochlear implant [Abstract]
    Dawson, Pam W. ; Blamey, Peter J. ; Clark, Graeme M. ; Busby, P. A. ; Rowland, L.C. ; Dettman, S. J. ; Brown, A. M. ; Dowell, Richard C. ; Rickards, Field W. ; Alcantara, Joseph I. ( 1989)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Evaluation of a two-formant speech-processing strategy for a multichannel cochlear prosthesis
    Dowell, R. C. ; Seligman, P. M. ; Blamey, P. J. ; Clark, Graeme M. ( 1987)
    Initial results with the two-formant speech-processing strategy (F0FIF2) confirm the advantage of a multichannel cochlear prosthesis capable of stimulating at different sites within the cochlea. The successful presentation of two spectral components by varying the place of stimulation leads to the possibility of presenting further spectral information in this manner. Because virtually all multichannel implant patients demonstrate good "place" (electrode site) discrimination, these more refined coding strategies should lead to benefits for the majority of implantees. Already, with the F0FIF2 strategy, we have a system that appears to provide some effective auditory-alone communication ability for the average patient.
  • Item
    Thumbnail Image
    A multiple-electrode intracochlear implant for children
    Clark, Graeme M. ; Blamey, Peter J. ; Busby, Peter A. ; Dowell, Richard C. ; Franz, Burkhard K-H. ; Musgrave, Gaye Nicholls ; Nienhuys, Terry G. ; Pyman, Brian C. ; Roberts, Susan A. ; Tong, Yit C. ; Webb, Robert L. ; Kuzma, Januz A. ; Money, David K. ; Patrick, James F. ; Seligman, Peter M. ( 1987)
    A multiple-electrode intracochlear implant that provides 21 stimulus channels has been designed for use in young children. It is smaller than the adult version and has magnets to facilitate the attachment of the headset. It has been implanted in two children aged 5 and 10 years. The two children both lost hearing in their third year, when they were still learning language. Following implantation, it was possible to determine threshold and comfortable listening levels for each electrode pair. This was facilitated in the younger child by prior training in scaling visual and electrotactile stimuli. Both children are regular users of the implant, and a training and assessment program has been commenced.