Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 462
  • Item
    Thumbnail Image
    Hearing restoration with the multichannel auditory brainstem implant
    Briggs, R. J. S. ; Kaye, A. H. ; Dowell, R. C. ; Hollow, R. D. ; Clark, Graeme M. ( 1997)
    Restoration of useful hearing is now possible in patients with bilateral acoustic neuromas by direct electrical stimulation of the cochlear nucleus. Our first experience with the Multichannel Auditory Brainstem Implant is reported. A forty four year old female with bilateral acoustic neuromas and a strong family history of Neurofibromatosis Type II presented with profound bilateral hearing impairment. Translabyrinthine removal of the right tumour was performed with placement of the Nucleus eight electrode Auditory Brainstem Implant. Intraoperative electrically evoked auditory brainstem response monitoring successfully confirmed placement over the cochlear nucleus. Postoperatively, auditory responses were obtained on stimulation of all electrodes with minimal non-auditory sensations. The patient now receives useful auditory sensations using the "SPEAK" speech processing strategy. Auditory brainstem Implantation should be considered for patients with Neurofibromatosis Type II in whom hearing preservation tumour removal is not possible.
  • Item
    Thumbnail Image
    Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis
    Cowan, Robert S. C. ; Galvin, Karyn L. ; KLIEVE, SHARON ; Barker, Elizabeth J. ; Sarant, Julia Z. ; DETTMAN, SHANI ; Hollow, Rod ; RANCE, GARY ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. ( 1997)
    It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise. Since the first implantation of the Nucleus device in a profoundly hearing-impaired child in Melbourne in 1985, there has been a rapid growth in the number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation -resulting from earlier detection of deafness; (2) improved hardware and surgical techniques -allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study
    XU, JIN ; Shepherd, Robert K. ; Millard, Rodney E. ; Clark, Graeme M. ( 1997)
    A major factor associated with recent improvements in the clinical performance of cochlear implant patients has been the development of speech-processing strategies based on high stimulation rates. While these processing strategies show clear clinical advantage, we know little of their long-term safety implications. The present study was designed to evaluate the physiological and histopathological effects of long-term intracochlear electrical stimulation using these high rates. Thirteen normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods of up to 2100 h using either two pairs of bipolar or three monopolar stimulating electrodes. Stimuli consisted of short duration (25-50 µs/phase) charge-balanced biphasic current pulses presented at 1000 pulses per second (pps) per channel for monopolar stimulation, and 2000 pps/channel for bipolar stimulation. The electrodes were shorted between current pulses to minimize any residual direct current, and the pulse trains were presented using a 50% duty cycle (500 ms on; 500 ms oft) in order to simulate speech. Both acoustic (ABR) and electrical (EABR) auditory brainstem responses were recorded periodically during the chronic stimulation program, All cochleas showed an increase in the click-evoked ABR threshold following implant surgery; however, recovery to near-normal levels occurred in approximately half of the stimulated cochleas 1 month post-operatively. The use of frequency-specific stimuli indicated that the most extensive hearing loss generally occurred in the high-frequency basal region of the cochlea (12 and 24 kHz) adjacent to the stimulating electrode. However, thresholds at lower frequencies (2, 4 and 8 kHz), appeared at near-normal levels despite long-term electrode implantation and electrical stimulation. Our longitudinal EABR results showed a statistically significant increase in threshold in nearly 40% of the chronically stimulated electrodes evaluated; however, the gradient of the EABR input/output (I/O) function (evoked potential response amplitude versus stimulus current) generally remained quite stable throughout the chronic stimulation period. Histopathological examination of the cochleas showed no statistically significant difference in ganglion cell densities between cochleas using monopolar and bipolar electrode configurations (P = 0.67), and no evidence of cochlear damage caused by high-rate electrical stimulation when compared with control cochleas. Indeed, there was no statistically significant relationship between spiral ganglion cell density and electrical stimulation (P = 0.459), or between the extent of loss of inner (IHC, P = 0.86) or outer (OHC, P=0.30) hair cells and electrical stimulation. Spiral ganglion cell loss was, however, influenced by the degree of inflammation (P=0.016) and electrode insertion trauma. These histopathological findings were consistent with the physiological data. Finally, electrode impedance, measured at completion of the chronic stimulation program, showed close correlation with the degree of tissue response adjacent to the electrode array. These results indicated that chronic intracochlear electrical stimulation, using carefully controlled charge-balanced biphasic current pulses at stimulus rates of up to 2000 pps/channel, does not appear to adversely affect residual auditory nerve elements or the cochlea in general. This study provides an important basis for the safe application of improved speech-processing strategies based on high-rate electrical stimulation.
  • Item
    Thumbnail Image
    Psychophysical studies with two binaural cochlear implant subjects
    van Hoesel, R. J. M. ; Clark, Graeme M. ( 1997)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Reduction in excitability of the auditory nerve following electrical simulation at high stimulus rates. II. Comparison of fixed amplitude with amplitude modulated stimuli
    TYKOCINSKI, MICHAEL ; Shepherd, Robert K. ; Clark, Graeme M. ( 1997)
    We have previously shown that acute electrical stimulation of the auditory nerve using charge-balanced biphasic current pulses presented continuously can lead to a prolonged decrement in auditory nerve excitability (Tykocinski et al., Hear. Res. 88 (1995), 124-142). This work also demonstrated a reduction in electrically evoked auditory brainstem response (EABR) amplitude decrement when using an otherwise equivalent pulse train with a 50% duty cycle. In the present study we have extended this work in order to compare the effects of electrical stimulation using both fixed amplitude electrical pulse trains and amplitude modulated (AM) pulse trains that more accurately model the dynamic stimulus paradigms used in cochlear implants. EABRs were recorded from guinea pigs following acute stimulation using AM trains of charge-balanced biphasic current pulses. The extent of stimulus-induced reductions in the EABR were compared with our previous results using either fixed amplitude continuous, or 50% duty cycle pulse trains operating at 0.34 µC/phase (2 mA, 170 µs/phase) at 400 or 1000 pulses/s (Tykocinski et al., Hear. Res. 88 (1995) 124-142). The AM pulse train, operating at the same rates, was based on a I-s sequence of the most extensively activated electrode of a Nucleus Mini-22 cochlear implant using the SPEAK speech processing strategy exposed to 4-talker babble, and delivered the same total charge as the fixed amplitude 50% duty cycle pulse train. Two hours of continuous stimulation induced a significant, rate-dependent reduction in auditory nerve excitability, and showed only a slight post-stimulus recovery for monitoring periods of up to 6 hours. Following 2 or 4 h of stimulation using an otherwise equivalent pulse train with a 50% duty cycle or the AM pulse train, significantly less reduction in the EABR was observed, and recovery to pre-stimulus levels was generally rapid and complete. These differences in the extent of the recovery between the continuous waveform and both the 50% duty cycle and AM waveforms were statistically significant for both 400 and 1000 pulses/s stimuli. Consistent with our previous results, the stimulus changes observed using AM pulse trains were rate dependent, with higher rate stimuli evoking more extensive stimulus-induced changes. The present findings show that while stimulus-induced reductions in neural excitability are dependent on the extent of stimulus-induced neuronal activity, the use of an AM stimulus paradigm further reduces post-stimulus neural fatigue.
  • Item
    Thumbnail Image
    Is age at cochlear implantation in children important? A 2-deoxyglucose study in cats.
    Seldon, H. Lee ; Kawano, Atsushi ; Clark, Graeme M. ( 1997)
    Should one implant prelinguistically deaf children at the earliest possible age or is it better to wait a couple of years? In normally hearing kittens functional auditory development is completed, up to the level of the inferior colliculus (IC), by 30 days after birth (DAB) [1]. However, in deaf kittens stimulation with a cochlear implant can alter the IC map even at ages up to 120 DAB [2]. In normally hearing children the auditory brainstem response approximates the adult form by the age of 2 years. Studies of deaf children with cochlear implants have indicated that implantation by the age of 5-6 yields a high success rate. We implanted neonatally deafened kittens at different ages, stimulated them for long periods, then looked at the spread of 2-deoxyglucose (2-DG) in the IC. If age is a factor in plasticity in deaf cats, then the distribution of 2-DG uptake should vary with age at implantation.
  • Item
    Thumbnail Image
    The effect of language knowledge on speech perception: what are we really assessing?
    Sarant, Julia Z. ; Blamey, Peter J. ; Cowan, Robert S. ; Clark, Graeme M. ( 1997)
    Objective: The authors examined whether open-set speech perception scores are limited by knowledge of vocabulary and syntax and further considered whether remediation of vocabulary and syntax will increase open-set speech perception scores. Study Design: This was a repeated-measures study design in the setting of a primary (elementary) school for the hearing impaired. Patients: The study population was composed of three hearing-impaired children using Nucleus 22-channel cochlear implant. Intervention: Intervention used was language remediation sessions. Main Outcome Measures: The main outcome measures were assessment of auditory-alone speech perception benefit using open-set words and sentences and assessment of syntactic knowledge using the Test of Syntactic Ability. Outcome measures were applied before and after remediation. Results: Child 1 and child 2 showed a significant postremediation improvement in their overall scores on the Test of Syntactic Ability and in their ability to perceive words learned during remediation. Child I and child 2 also showed a significant improvement in their scores on a modified Bamford-Kowal-Bench open-set sentence test, which specifically targeted grammatical constructs trained in remediation sessions. Conclusions: Remediation of language knowledge deficits significantly improved open-set speech perception for two children, suggesting a need to include language remediation in cochlear implant habilitation programs.
  • Item
    Thumbnail Image
    Engineering
    Patrick, James F. ; Seligman, Peter M. ; Clark, Graeme M. (Singular Publishing, 1997)
    The last two decades have seen major advances in cochlear implants for profoundly deaf people. Implants are now used by severely to profoundly deaf adults and children in almost every phase of daily life. They have become an established treatment, and today's expectations for all aspects of the cochlear implant system are much greater than they were for the experimental devices of the early 1980s. Hardware designs have improved to meet clinical and research demands, technological developments have made the devices smaller and more reliable, and speech processing research has yielded a series of improvements in patient benefit.
  • Item
    Thumbnail Image
    Intracellular responses of the rat cochlear nucleus to sound and its role in temporal coding
    Paolini, Antonio G. ; Clark, Graeme M. ; Burkitt, Anthony N. ( 1997)
    The anteroventral cochlear nucleus (AVCN), the first centre of the central auditory pathway, contains globular bushy cells, which are unique in their ability to produce fast excitatory post-synaptic potentials (EPSPs). Using in vivo intracellular recordings in the rat AVCN we examined these fast EPSPs in relation to temporal coding. At frequencies up to 2.5 kHz, EPSPs were evoked on successive sine waves of the stimulus with EPSP summation limited. This one-to-one relationship between the EPSPs and the sound wave period was present at higher frequencies and over a greater intensity range than for action potentials. These results suggest that temporal coding is possible in globular bushy neurones by their ability to extract temporal information through fast processing of convergent presynaptic input.
  • Item
    Thumbnail Image
    Estimating mechanical responses to pulsatile electrical stimulation of the cochlea
    McAnally, Ken I. ; Brown, Mel ; Clark, Graeme M. ( 1997)
    This study estimated the mechanical response of the cochlea to pulsatile electrical stimulation of the scala tympani of the cat. The auditory nerve compound action potential evoked by an acoustic probe was forward-masked by a train of charge-balanced biphasic current pulses. Masking as a function of probe frequency reflected the excitation pattern of the response to the masker and resembled the spectrum of the electrical stimulus. Both pulse rate and pulse width influenced the degree of masking. The vibration of a region of the basilar membrane was estimated by recording the local cochlear microphonic evoked by biphasic pulses. The amplitude of the cochlear microphonic was proportional to the amplitude of the spectral component of the electrical stimulus to which the local cochlear microphonic was tuned. These results are consistent with the generation of a mechanical response to the electrical stimulus.