Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis
    Cowan, Robert S. C. ; Galvin, Karyn L. ; KLIEVE, SHARON ; Barker, Elizabeth J. ; Sarant, Julia Z. ; DETTMAN, SHANI ; Hollow, Rod ; RANCE, GARY ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. ( 1997)
    It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise. Since the first implantation of the Nucleus device in a profoundly hearing-impaired child in Melbourne in 1985, there has been a rapid growth in the number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation -resulting from earlier detection of deafness; (2) improved hardware and surgical techniques -allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise.
  • Item
    Thumbnail Image
    Speech perception results for children with implants with different levels of preoperative residual hearing
    Cowan, Robert S. C. ; DelDot, J. ; Barker, J. Z. ; Barker, Elizabeth J. ; Sarant, Julia Z. ; Pegg, P. ; Dettman, S. ; Galvin, K. L. ; Rance, G. ; Hollow, R. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme, M. ( 1997)
    Objective: Many reports have established that hearing-impaired children using the Nucleus 22 channel cochlear implant may show both significant benefits to lipreading and significant scores on open-set words and sentences using electrical stimulation only. These findings have raised questions about whether severely or severely-to-profoundly deaf children should be candidates for cochlear implants. To study this question, postoperative results for implanted children with different levels of preoperative residual hearing were evaluated in terms of speech perception benefits. Study Design/Setting: A retrospective study of the first 117 children, sequentially, to undergo implantation in the Melbourne and Sydney Cochlear Implant Clinics was undertaken. All children had been assessed by and received their implants in a tertiary referral centre. Main Outcome Measures: To assess aided residual hearing, the children were grouped into four categories of hearing on the basis of their aided residual hearing thresholds measured preoperatively. To assess benefits, the scores of children on standard speech perception tests were reviewed. As different tests were used for children with different ages and language skills, children were grouped into categories according to the level of postoperative speech perception benefit. Results: The results showed that children in the higher categories of aided preoperative residual hearing showed significant scores on open-set word and sentence perception tests using the implant alone. For children in lower categories of aided residual hearing, results were variable within the groups. More than 90% of children with implants with aided residual hearing thresholds in the speech range above I kHz achieved open-set understanding of words and sentences. Conclusion: While the results of this preliminary study confirm previous findings of differential outcomes for children with different levels of preoperative residual hearing, they suggest that children with severe to profound hearing impairments should be considered for cochlear implantation.
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    How much residual hearing is too much?
    Cowan, R. S. C. ; Dowell, R. C. ; Psarros, C. ; Dettman, S. J. ; Rance, G. ; Clark, Graeme M. ( 2000)
    The value of cochlear implants as an established clinical option for profoundly hearing-impaired adults and children has been supported by significant research results over a number of years (U.S. National Institutes of Health Consensus Statement 1995). As a direct consequence of the level of benefits shown for cochlear implant users on measures of speech perception, research has focused on investigating whether severely hearing impaired adults and children would be suitable candidates for cochlear implantation. I n considering the candidature of any individual, both medical and audiological suitability are investigated. The primary concern is to establish to what degree the patient would benefit from use of the cochlear implant.
  • Item
    Thumbnail Image
    Speech perception results for implanted children with different levels of preoperative residual hearing [Abstract]
    Galvin, K.L. ; Rance, G. ; Larratt, M. ; Hollow, R. ; Herridge, S. ; Skok, M. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, R. S. C. ; DelDot, J. ; Barker, E. J. ; Sarant, J. Z. ; Dettman, S. ; Pegg, P. ( 1996)
    Many reports have established that hearing-impaired children using the Nucleus 22-channel cochlear implant may show both significant benefits to lipreading, and significant scores on open-set words and sentences using electrical stimulation only. These findings have raised suggestions that severely or severely-to-profoundly deaf children might benefit more from a cochlear implant than conventional amplification.
  • Item
    Thumbnail Image
    Speech perception benefits for implanted children with preoperative residual hearing [Abstract]
    Hollow, R. ; Rance, G. ; Dowell, R.C. ; Pyman, B. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Dettman, S. ( 1995)
    Since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, there has been rapid expansion in the number of implanted children world-wide. Improved surgical technique and experience in paediatric assessment and management have contributed to a trend to implant very young children. At the same time there has also been continuing development of improved speech processing strategies resulting in greater speech perception benefits.