Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 263
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using open-set CID sentences
    Clark, Graeme M. ; Tong, Yit Chow ; Martin, Lois F. A. ( 1981)
    A multiple-channel cochlear implant and speech processor have been used in two postlingually deaf adult patients with a total hearing loss, to enable them to perceive varying degrees of running speech. The results have been confirmed with open-set CID everyday sentence tests. Using the implant alone, the patients obtained 8% and 14% scores with pre-recorded material, and 34% and 36% scores for "live" presentations. This was equivalent to the perception of 35% of connected discourse. When the implant was used in conjunction with lipreading, improvements of 188% and 386% were obtained over lipreading alone, and the scores were 68% and 98% which were equivalent to the perception of 60% and 95% of connected discourse.
  • Item
    Thumbnail Image
    Speech processor design for a multiple-channel cochlear implant
    Tong, Y. C. ; Clark, Graeme M. ; Busby, P. A. ; Millar, J. B. ; Martin, L. F. ( 1980)
    This paper outlines the strategy adopted for a laboratory-based speech processor used to provide speech information to patients with a multiple-channel cochlear implant It also presents the results of vowel and consonant recognition studies and speech test using open sets of words and sentences.
  • Item
    Thumbnail Image
    A protocol for the prevention of infection in cochlear implant surgery
    Clark, Graeme M. ; Pyman, Brian C. ; Pavillard, Robin E. (Cambridge University Press, 1980)
    The reduction of infection to an absolute minimum is a very desirable goal in any form of surgery. It is especially important with a cochlear implant operation as infection in the labyrinth can lead to degeneration of the auditory nerve fibres it is hoped to stimulate electrically (Clark et al, 1975). Furthermore, as the implantation of foreign materials increases the risk of infection, as the operation can last 6-7 hours (Altemeier et al., 1976), and as the operators are in very close proximity to the implant site, more stringent measures for the prevention of infection need to be adopted than with other forms of otological surgery. For these reasons a protocol has been developed for preventing infection in our cochlear implant surgery. This is an overall approach to the prevention of infection and involves pre-operative measures, an operating theatre routine, the use of horizontal laminar flow filter units, correct surgical technique and the use of systemic and local antibiotics.
  • Item
    Thumbnail Image
    A preliminary report on a multiple-channel cochlear implant operation
    Tong, Y. C. ; Black, R. C. ; Clark, Graeme M. ; Forster, I. C. ; Millar, J. B. ; O'Loughlin, B. J. ; Patrick, J. F. (Cambridge University Press, 1979)
    Intra-cochlear single-channel electrical stimulation has recently been attempted by Michelson (1971) and by House and Urban (1973). Douek et at. (1977) have described experiments with a single-channel promontory electrode system. It is generally accepted that a single-channel system is useful in conveying crude auditory information such as the presence of sounds and some prosodic features of speech (Bilger et al., 1977; Douek et al., 1977). (From Introduction)
  • Item
    Thumbnail Image
    The surgery for multiple-electrode cochlear implantations
    Clark, Graeme M. ; Pyman, Brian C. ; Bailey, Quentin R. (Cambridge University Press, 1979)
    The multiple-electrode hearing prosthesis designed in the Departments of Otolaryngology and Electrical Engineering (UMDOLEE) at the University of Melbourne (Clark et al., 1977) has been miniaturized with hybrid circuitry so that, if design changes are necessary as a result of initial patient testing, they can be made at minimal cost. This results, however, in increased package dimensions which makes its placement and the design of the surgery more critical. This problem is increased by the fact that we have considered it important to be able to remove the package and replace it with another without disturbing the implanted electrode array, should the first receiver-stimulator fail or an improved design become available. This has meant the design of a special connector (Patrick, 1977; Clark et al., 1978) which adds to the dimensions of the implanted unit. In addition the placement of the coils for transmitting power and information has to be considered. Not only is it desirable to site the coils at a convenient location behind the ear to facilitate the placement and wearing of the external transmitter, but there should also be no relative movement between the coils and the electronic package. These design considerations have led to the sitting of the coils on top of the hermetically-sealed box, and further increased the height of the package. The dimensions of the package shown in Fig. 1 are length 42 mm, width 32 mm, height of connector 8.5 mm, height of receiver-stimulato unit 13 mm. The surgical considerations discussed are the result of a number of temporal bone and cadaver dissections, and the surgical implantation at The Royal Victorian Eye and Ear Hospital of the UMDOLEE unit in a specially-selected patient.
  • Item
    Thumbnail Image
    A cochlear implant round window electrode array
    Clark, Graeme M. ; Patrick, J. F. ; Bailey, Q. (Cambridge University Press, 1979)
    One important aspect of cochlear implantation is the placement of a multiple-electrode array close to residual auditory nerve fibres so that discrete groups of fibres can be stimulated electrically according to the place basis of frequency coding. Furthermore, in patients who are postlingually deaf these electrodes should lie in relation to the nerve fibres which are responsible for transmitting the frequencies which are important in speech comprehension, viz. 300-3,000 Hz. The method of electrode insertion should also ensure that there is no significant damage to auditory nerve fibres.
  • Item
    Thumbnail Image
    A multiple-electrode cochlear implant
    Clark, Graeme M. ; Tong, Y. C. ; Bailey, Q. R. ; Black, R. C. ; Martin, L. F. ; Millar, J. B. ; O'Loughlin B. J. ; Patrick, J. F. ; Pyman, B. C. ( 1978)
    Interest in artificially stimulating the auditory nerve electrically for sensori-neural deafness was first sparked off by Volta in the 18th century. Count Volta, who was the first to develop the electric battery, connected up a number of his batteries to two metal rods which he inserted into his ears. Having placed the rods in his ears he pressed the switch and received "une secousse dans la tete" and perceived a noise like "the boiling of thick soup".
  • Item
    Thumbnail Image
    Design criteria of a multiple-electrode cochlear implant hearing prosthesis
    Clark, Graeme M. ; Black, R. C. ; Forster, I. C. ; Patrick, J. F. ; Tong, Y. C. ( 1978)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Hearing restoration with the multichannel auditory brainstem implant
    Briggs, R. J. S. ; Kaye, A. H. ; Dowell, R. C. ; Hollow, R. D. ; Clark, Graeme M. ( 1997)
    Restoration of useful hearing is now possible in patients with bilateral acoustic neuromas by direct electrical stimulation of the cochlear nucleus. Our first experience with the Multichannel Auditory Brainstem Implant is reported. A forty four year old female with bilateral acoustic neuromas and a strong family history of Neurofibromatosis Type II presented with profound bilateral hearing impairment. Translabyrinthine removal of the right tumour was performed with placement of the Nucleus eight electrode Auditory Brainstem Implant. Intraoperative electrically evoked auditory brainstem response monitoring successfully confirmed placement over the cochlear nucleus. Postoperatively, auditory responses were obtained on stimulation of all electrodes with minimal non-auditory sensations. The patient now receives useful auditory sensations using the "SPEAK" speech processing strategy. Auditory brainstem Implantation should be considered for patients with Neurofibromatosis Type II in whom hearing preservation tumour removal is not possible.
  • Item
    Thumbnail Image
    Cognitive processing in children using cochlear implants: the relationship between visual memory, attention, and executive functions and developing language skills
    Surowiecki, Vanessa N. ; SARANT, JULIA ; MARUFF, PAUL ; Blamey, Peter J. ; Busby, Peter A. ; Clark, Graeme M. ( 2002)
    We performed this study to determine whether children using a cochlear implant performed differently from age- and gender-matched hearing aid users on 8 neuropsychological measures of visual memory, attention, and executive functioning. The study also examined whether differences in cognitive skills could account for some of the observed variance in speech perception, vocabulary, and language abilities of hearing-impaired children. In contrast to previous studies, our results revealed no significant cognitive differences between children who use a cochlear implant and children who use hearing aids. Partial correlation analysis indicated that the children’s visual memory skills, i.e., their recognition memory, delayed recall, and paired associative learning memory skills, correlated significantly with their language skills. When examined at a significance level of .01, attention and executive functioning skills did not relate to the children’s developing speech perception, vocabulary, or language skills. The results suggested that differences in visual memory skills may account for some of the variance seen in the language abilities of children using implants and children using hearing aids.