Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Speech perception as a function of electrical stimulation rate: using the nucleus 24 cochlear implant system
    Vandali, Andrew E. ; Whitford, Lesley A. ; Plant, Kerrie L. ; Clark, Graeme M. ( 2000)
    Objective: To investigate the effect of varying electrical stimulation rate on speech comprehension by cochlear implant users, while keeping the number of stimulated channels constant. Design: Three average rates of electrical stimulation,250, 807, and 1615 pulses per second per channel (pps/ch), were compared using a speech processing strategy that employed an electrode selection technique similar to that used in the Spectral Maxima Sound Processor strategy (McDermott, McKay,& Vandali, 1992; McDermott & Vandali, Reference Note 1; McKay, McDermott, Vandali, & Clark, 1991)and the Spectral Peak strategy (Skinner et al., 1994;Whitford et al., 1995). Speech perception tests with five users of the Nucleus 24 cochlear implant system were conducted over a 21-wk period. Subjects were given take-home experience with each rate condition. A repeated ABC evaluation protocol with alternating order was employed so as to account for learning effects and to minimize order effects. Perception of open-set monosyllabic words in quiet and open-set sentences at signal to noise ratios ranging from +20 to 0 dB, depending on the subject’s ability, were tested. A comparative performance questionnaire was also administered. Results: No statistical differences in group performance between the 250 and 807 pps/ch rates were observed in any of the speech perception tests. However, significantly poorer group performance was observed for the 1615 pps/ch rate for some tests due predominantly to the results of one subject. Analysis of individual scores showed considerable variation across subjects. For some subjects, one or more of the three rate conditions evaluated provided benefits on some speech perception tasks. The results of the comparative performance questionnaire indicated a preference for the 250 and 807pps/ch rates over the 1615 pps/ch rate for most listening situations. Conclusions: For the speech processing strategy, implant system, and subjects evaluated in this study, the group results indicated that the use of electrical stimulation rates higher than 250 pps/ch (up to 1615 pps/ch) generally provided no significant improvement to speech comprehension. However, individual results indicated that perceptual.
  • Item
    Thumbnail Image
    Speech processing for cochlear implants
    Tong, Y. C. ; Millar, J. B. ; Blamey, P. J. ; Clark, Graeme M. ; Dowell, R. C. ; Patrick, J. F. ; Seligman, P. M. (JAI Press Ltd, 1992)
    The cochlear implant is a hearing prosthesis designed to replace the function of the ear. The operation of the prosthesis can be described as a sequence of four functions: the processing of the acoustic signal received by a microphone; the transfer of the processed signal through the skin; the creation of neural activity in the auditory nerve; and the integration of the experience of this neural activity into the perceptual and cognitive processing of the implantee.
  • Item
    Thumbnail Image
    The development of speech processing strategies for the University of Melbourne/cochlear multiple channel implantable hearing prosthesis.
    Clark, Graeme M. ( 1992)
    The speech processing strategies that have been used with the University of Melbourne/Cochlear multiple channel implantable hearing prosthesis have been developed systematically from the inaugural one that extracted the second formant and presented this on a place coding basis and the voicing frequency which determined the rate of stimulation. Speech processing has also depended heavily on biological research to ensure that the stimulus parameters used or the operative approach did not damage the spiral ganglion cells it was hoped to stimulate. The advances in speech processing from Melbourne primarily have been to extract more features and spectral information and present this on a place coding basis. This has led to a progressive improvement in speech perception, and a small number of patients can achieve nearly 100% correct scores for open sets of phonetically-balanced words using electrical stimulation alone.
  • Item
    Thumbnail Image
    Clinical trial of a multiple-channel cochlear prosthesis: an initial study in four patients with profound total hearing loss
    Bailey, Quentin R. ; Seligman, Peter M. ; Tong, Yit. C. ; Clark, Graeme M. ; Dowell, R. C. ; Brown, Alison M. ; Luscombe, Susan M. ; Pyman, Brian C. ; Webb, Robert L. ( 1983)
    The clinical trial of a multiple-channel cochlear prosthesis was undertaken in four patients with postlingual deafness and profound total hearing loss. The results of open-set speech tests confirmed that, using electrical stimulation alone, one patient could have a meaningful conversation with resorting to lipreading (for example, this patient uses the prosthesis to converse with her husband on the telephone). The results of closed-set speech tests also suggested that a multiple-channel stimulator is more effective than a single-channel one in conveying speech information. The cochlear prosthesis was especially effective in all four patients when it was used in conjunction with lipreading, and speech-tracking tests showed that the patients could combine the information obtained from both electrical stimulation and lipreading.
  • Item
    Thumbnail Image
    Prediction of variance in neural response to cochlear implant stimulation and its implications for perception [Abstract]
    O'LEARY, STEPHEN ; Irlicht, Lawrence S. ; BRUCE, IAN ; White, Mark ; Clark, Graeme M. ( 1997)
    Cochlear implant patients' perception of sound is derived via electrical pulses arising from an electrode array. Chosen aspects of the acoustic spectrum are coded via a stimulation pattern designed according to some sound coding algorithm. Thus, a patients' ability to discriminate between sounds, and in turn their understanding, is directly related to their ability to differentiate between the patterns of electrical stimulation which code various sounds.