Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Aided speech recognition abilities of adults with a severe or severe-to-profound hearing loss
    Flynn, Mark C. ; Dowell, Richard C. ; Clark, Graeme M. ( 1998)
    Adults with severe or severe-to-profound hearing losses constitute between 11% and 13.5% of the hearing impaired population. A detailed investigation of the speech recognition of adults with severe (n = 20) or severe-to-profound (n = 14) hearing loss was conducted at The University of Melbourne. Each participant took part in a series of speech recognition tasks while wearing his or her currently fitted hearing aid(s). The assessments included closed-set tests of consonant recognition and vowel recognition, combined with open-set tests of nonosyllabic word recognition and sentence recognition. Sentences were presented in quiet listening conditions. Although the results demonstrated wide variability in performance, some general trends were observed. As expected vowels were generally well perceived compared with consonants. Monosyllabic word recognition scores for both the adults with a severe hearing impairment (M = 67.2%) and the adults with a severe-to profound hearing impairment (M = 38.6%) could be predicted from the segmental tests, with an allowance for lexical effects. Scores for sentences presented in quiet showed additional linguistic effects and a significant decrease in performance with the addition of background noise (from 82.9% to 74.1% for adults with a severe hearing loss and from 55.8% to 34.2% for adults with a severe-to-profound hearing loss). Comparisons were made between the participants and a group of adults using a multiple-channel cochlear implant. This comparison indicated that some adults with a severe or severe-to-profound hearing loss may benefit from the use of a cochlear implant. The results of this study support the contention that cochlear implant candidacy should not rely solely on audiometric thresholds.
  • Item
    Thumbnail Image
    The effects of auditory feedback from the nucleus cochlear implant on the vowel formant frequencies produced by children and adults
    Richardson, Louise M. ; Busby, Peter A. ; Blamey, Peter J. ; Dowell, Richard C. ; Clark, Graeme M. ( 1993)
    Cochlear implants provide an auditory signal with which profoundly deaf users may monitor their own speech production. The vowel production of two adults and three children who used the Nucleus multiple-electrode cochlear implant was examined to assess the effect of altered auditory feedback. Productions of words were recorded under conditions where the talkers received auditory feedback (speech processor turned on) and where no auditory feedback was provided (speech processor turned off). Data were collected over 3 days at weekly intervals. First and second formant frequencies were measured and the data were analysed to assess significant differences between auditory feedback conditions, vowel context, and data collection points. Overall, the results varied across talkers, across the data collection days, and depended on the consonant environment of the vowel. However, two effects of auditory feedback were noted. First, there was a generalized shift in first formant frequencies between the processor on and processor off conditions across three of the five subjects, but the shift differed in direction for each subject. Second, for three of the five talkers, the two front vowels /ε/ and /I/ were more neutralised in the absence of auditory feedback. However, this effect was less pronounced than that noted by previous studies.
  • Item
    Thumbnail Image
    Multichannel cochlear implantation in children: a summary of current work at The University of Melbourne
    Dowell, Richard C. ; Dawson, Pam W. ; Dettman, Shani J. ; Shepherd, Robert K. ; Whitford, Lesley A. ; Seligman, Peter M. ; Clark, Graeme M. ( 1991)
    This paper summarizes research work relating to multichannel cochlear implantation in children at the University of Melbourne. Ongoing safety studies relating to the implantation of young children are discussed. Results of these studies suggest that special design considerations are necessary for a prosthesis to be implanted in children under the age of 2 years. Results of clinical assessment of implanted children and adolescents are also discussed in terms of speech perception, speech production, and language development, and some possible predictive factors are suggested. Preliminary data suggests that a high proportion of young children can achieve open-set speech perception with the cochlear implant given appropriate training and support. Initial results with adults using new speech processing hardware and a new coding scheme are also presented. These suggest that improved speech perception in quiet and competing noise is possible with the new system.