Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study
    XU, JIN ; Shepherd, Robert K. ; Millard, Rodney E. ; Clark, Graeme M. ( 1997)
    A major factor associated with recent improvements in the clinical performance of cochlear implant patients has been the development of speech-processing strategies based on high stimulation rates. While these processing strategies show clear clinical advantage, we know little of their long-term safety implications. The present study was designed to evaluate the physiological and histopathological effects of long-term intracochlear electrical stimulation using these high rates. Thirteen normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods of up to 2100 h using either two pairs of bipolar or three monopolar stimulating electrodes. Stimuli consisted of short duration (25-50 µs/phase) charge-balanced biphasic current pulses presented at 1000 pulses per second (pps) per channel for monopolar stimulation, and 2000 pps/channel for bipolar stimulation. The electrodes were shorted between current pulses to minimize any residual direct current, and the pulse trains were presented using a 50% duty cycle (500 ms on; 500 ms oft) in order to simulate speech. Both acoustic (ABR) and electrical (EABR) auditory brainstem responses were recorded periodically during the chronic stimulation program, All cochleas showed an increase in the click-evoked ABR threshold following implant surgery; however, recovery to near-normal levels occurred in approximately half of the stimulated cochleas 1 month post-operatively. The use of frequency-specific stimuli indicated that the most extensive hearing loss generally occurred in the high-frequency basal region of the cochlea (12 and 24 kHz) adjacent to the stimulating electrode. However, thresholds at lower frequencies (2, 4 and 8 kHz), appeared at near-normal levels despite long-term electrode implantation and electrical stimulation. Our longitudinal EABR results showed a statistically significant increase in threshold in nearly 40% of the chronically stimulated electrodes evaluated; however, the gradient of the EABR input/output (I/O) function (evoked potential response amplitude versus stimulus current) generally remained quite stable throughout the chronic stimulation period. Histopathological examination of the cochleas showed no statistically significant difference in ganglion cell densities between cochleas using monopolar and bipolar electrode configurations (P = 0.67), and no evidence of cochlear damage caused by high-rate electrical stimulation when compared with control cochleas. Indeed, there was no statistically significant relationship between spiral ganglion cell density and electrical stimulation (P = 0.459), or between the extent of loss of inner (IHC, P = 0.86) or outer (OHC, P=0.30) hair cells and electrical stimulation. Spiral ganglion cell loss was, however, influenced by the degree of inflammation (P=0.016) and electrode insertion trauma. These histopathological findings were consistent with the physiological data. Finally, electrode impedance, measured at completion of the chronic stimulation program, showed close correlation with the degree of tissue response adjacent to the electrode array. These results indicated that chronic intracochlear electrical stimulation, using carefully controlled charge-balanced biphasic current pulses at stimulus rates of up to 2000 pps/channel, does not appear to adversely affect residual auditory nerve elements or the cochlea in general. This study provides an important basis for the safe application of improved speech-processing strategies based on high-rate electrical stimulation.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high stimulus rates: preliminary results
    Shepherd, R. K. ; Xu, J. ; Millard, R. E. ; Clark, Graeme M. ( 1994)
    The present preliminary report describes the electrophysiological response of the cochlea during long-term stimulation. The data indicate that electrical stimulation at a rate of 1000 pulses per second does not appear to adversely affect the implanted cochlea.
  • Item
    Thumbnail Image
    High rate electrical stimulation of the auditory nerve: physiological and pathological results [Abstract]
    Shepherd, Robert K. ; XU, JIN ; TYKOCINSKI, MICHAEL ; Millard, Rodney, E. ; Clark, Graeme M. ( 1995)
    Previous experimental studies have shown that chronic electrical stimulation of the auditory nerve using charge balanced biphasic current pulses at rates of up to 500 pulses per second (pps) do not adversely affect the adjacent spiral ganglion population. More recently, a number of clinical trials have indicated that speech processing strategies based on high pulse rates (1000 pps and more), can further improve speech perception. In this paper we summarize our results following acute and chronic electrical stimulation of the auditory nerve using high pulse rates.