Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 23
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study
    XU, JIN ; Shepherd, Robert K. ; Millard, Rodney E. ; Clark, Graeme M. ( 1997)
    A major factor associated with recent improvements in the clinical performance of cochlear implant patients has been the development of speech-processing strategies based on high stimulation rates. While these processing strategies show clear clinical advantage, we know little of their long-term safety implications. The present study was designed to evaluate the physiological and histopathological effects of long-term intracochlear electrical stimulation using these high rates. Thirteen normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods of up to 2100 h using either two pairs of bipolar or three monopolar stimulating electrodes. Stimuli consisted of short duration (25-50 µs/phase) charge-balanced biphasic current pulses presented at 1000 pulses per second (pps) per channel for monopolar stimulation, and 2000 pps/channel for bipolar stimulation. The electrodes were shorted between current pulses to minimize any residual direct current, and the pulse trains were presented using a 50% duty cycle (500 ms on; 500 ms oft) in order to simulate speech. Both acoustic (ABR) and electrical (EABR) auditory brainstem responses were recorded periodically during the chronic stimulation program, All cochleas showed an increase in the click-evoked ABR threshold following implant surgery; however, recovery to near-normal levels occurred in approximately half of the stimulated cochleas 1 month post-operatively. The use of frequency-specific stimuli indicated that the most extensive hearing loss generally occurred in the high-frequency basal region of the cochlea (12 and 24 kHz) adjacent to the stimulating electrode. However, thresholds at lower frequencies (2, 4 and 8 kHz), appeared at near-normal levels despite long-term electrode implantation and electrical stimulation. Our longitudinal EABR results showed a statistically significant increase in threshold in nearly 40% of the chronically stimulated electrodes evaluated; however, the gradient of the EABR input/output (I/O) function (evoked potential response amplitude versus stimulus current) generally remained quite stable throughout the chronic stimulation period. Histopathological examination of the cochleas showed no statistically significant difference in ganglion cell densities between cochleas using monopolar and bipolar electrode configurations (P = 0.67), and no evidence of cochlear damage caused by high-rate electrical stimulation when compared with control cochleas. Indeed, there was no statistically significant relationship between spiral ganglion cell density and electrical stimulation (P = 0.459), or between the extent of loss of inner (IHC, P = 0.86) or outer (OHC, P=0.30) hair cells and electrical stimulation. Spiral ganglion cell loss was, however, influenced by the degree of inflammation (P=0.016) and electrode insertion trauma. These histopathological findings were consistent with the physiological data. Finally, electrode impedance, measured at completion of the chronic stimulation program, showed close correlation with the degree of tissue response adjacent to the electrode array. These results indicated that chronic intracochlear electrical stimulation, using carefully controlled charge-balanced biphasic current pulses at stimulus rates of up to 2000 pps/channel, does not appear to adversely affect residual auditory nerve elements or the cochlea in general. This study provides an important basis for the safe application of improved speech-processing strategies based on high-rate electrical stimulation.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli
    Shepherd, Robert K. ; Linahan, N. ; Xu, J. ; Clark, Graeme M. ; Araki, S. ( 1999)
    This study was designed to evaluate the pathophysiological response of the cochlea following long-term intracochlear electrical stimulation using a poorly charge-balanced stimulus regime, leading to direct current (DC) levels >0.1 µA. Four normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods up to 2200 h. Stimuli consisted of 50 µs monophasic current pulses presented at 2000 pulses per second (pps) per channel, and resulted in DC levels of 0.4-2.8 µA. Both acoustic and electrical (EABR) evoked potentials were periodically recorded during the stimulation program. Frequency-specific stimuli indicated that an extensive and widespread hearing loss occurred over the 4-24 KHz region in all stimulated cochleae, although the 2 KHz region exhibited thresholds close to normal in some animals, despite long-term implantation and chronic stimulation. Longitudinal EABRs showed a statistically significant increase in threshold for three of the four animals. Histopathological evaluation of the cochleae revealed a highly significant reduction in ganglion cell density in stimulated cochleae compared with their controls. Spiral ganglion cell loss was significantly correlated with the degree of inflammation, duration of electrical stimulation, and the level of DC. In conclusion, the present study highlights the potential for neural damage following stimulation using poorly charge-balanced stimuli.
  • Item
    Thumbnail Image
    Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens
    Araki, Susumu ; Kawano, Atsushi ; Seldon, H. Lee ; Shepherd, Robert K. ; Funasaka, Sotaro ; Clark, Graeme M. ( 1998)
    We have studied spiral ganglion cell (SGC) survival and soma size in neonatally pharmacologically deafened kittens. They were implanted with a four-electrode array in the left cochlea at 100 to 180 or more days of age. Eight animals were chronically stimulated approximately 1000 hours over approximately 60 days with charge-balanced, biphasic current pulses; three were unstimulated controls. Using three-dimensional computer-aided reconstruction of the cochlea, the SGC position and cross-sectional area were stored. SGC position was mapped to the organ of Corti by perpendicular projections, starting from the basal end. The basal region of the cochlea was divided into three 4-mm segments. SGC survival (number per 0.1 mm of the length of the organ of Corti) and soma size for stimulated cochleae were compared statistically with implanted but unstimulated cochleae. There was no evidence of an effect of electrical stimulation on SGC survival under this protocol and with this duration. On the other hand, the cell size on the stimulated side was significantly larger than the control side in the middle segment (4 to 8 mm from the basal end). SGCs undergo a reduction in size after prolonged auditory deprivation; however, these changes may be partially moderated after chronic intracochlear electrical stimulation.
  • Item
    Thumbnail Image
    Reduction in excitability of the auditory nerve in guinea pigs following acute high rate electrical stimulation [Abstract]
    Huang, C. Q. ; Shepherd, R. K. ; Seligman, P. M. ; Clark, Graeme M. ( 1996)
    Electrical stimulation of neural tissue involves the transfer of charge to tissue via electrodes. Safe charge transfer can be achieved using biphasic current pulses designed to reduce the generation of direct current (DC) or the production of electrochemical products. However, neural stimulators must also use capacitors in series with electrodes, or electrode shorting between current pulses, to further minimize DC due to electrode polarization.
  • Item
    Thumbnail Image
    Acute effects of high-rate stimulation on auditory nerve function in guinea pigs
    Tykocinski, M. ; Shepherd, R. K. ; Clark, Graeme M. ( 1995)
    Cochlear implants have been shown to successfully provide profoundly deaf patients with auditory cues for speech discrimination. Furthermore, a number of safety studies using the Melbourne/Cochlear electrode array indicated that chronic electrical stimulation using charge-balanced biphasic current pulses and stimulus rates between 100 and 500 pulses per second (pps) do not result in additional spiral ganglion loss or general cochlear pathology.1-3 However, safe maximum levels for stimulus parameters (stimulus rate, charge per phase, charge density) have not yet been adequately defined.
  • Item
    Thumbnail Image
    Electrical stimulation of residual hearing in the implanted cochlea
    Clark, Graeme M. ; McAnally, K. I. ; Black, R. C. ; Shepherd, R. K. ( 1995)
    The average profoundly deaf person using a cochlear implant can now understand more speech than some severely to profoundly deaf people who use a hearing aid. For this reason there will be an increasing need to consider implanting people with residual hearing. In many of these people there could be significant hearing in the operated ear, as a majority of severely to profoundly deaf people are likely to have a symmetrical hearing loss. When three frequency average hearing thresholds were measured on 219 pensioners from the Australian National Acoustic Laboratories (H. Dillon, unpublished findings), 64% had less than a 10-dB difference between thresholds in each ear.
  • Item
    Thumbnail Image
    Cochlear pathology following chronic electrical stimulation of the auditory nerve: II Deafened kittens
    Shepherd, R. K. ; Matsushima, J. ; Martin, R. L. ; Clark, Graeme M. ( 1994)
    The present study examines the effects of long-term electrical stimulation of the auditory nerve on cochlear histopathology and spiral ganglion cell survival in young sensorineural deafened cats. Eight kittens were deafened using kanamycin and ethacrynic acid, and implanted with bipolar or monopolar scala tympani electrodes. Following recovery from surgery the animals were unilaterally stimulated using charge balanced biphasic current pulses for 450-1730 hours over implant periods of up to four months. Charge densities varied from 0.6-0.9 µC.cm ^-2 geom. per phase for monopolar electrodes to 12-26 µC.cm ^-2 geom. per phase for the bipolar electrodes. Electrically-evoked auditory brainstem responses (EABRs) were periodically monitored during stimulation to confirm that the stimulus levels were above threshold, and to monitor any change in the response of the auditory nerve. Following completion of the stimulation program cochleae were prepared for histological examination. EABRs exhibited relatively stable thresholds for both stimulated and implanted, unstimulated control cochleae for the stimulus duration. While the growth in response amplitude as a function of stimulus current remained stable for the bipolar control and monopolar stimulated cochleae, the five cochleae chronically stimulated using bipolar electrodes exhibited a moderate to large increase in response amplitude. These increases were associated with a more widespread fibrous tissue response which may have altered the current distribution within these cochleae. Implanted control cochleae exhibited significantly less tissue response within the scala tympani. Importantly, we observed no statistically significant difference in the spiral ganglion cell density associated with chronic electrical stimulation when compared with unstimulated control cochleae. While the present study supports the safe application of cochlear implants in young profoundly deafened children, it does not corroborate previous studies that have reported electrical stimulation providing a trophic effect on degenerating auditory nerve fibres.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high stimulus rates: preliminary results
    Shepherd, R. K. ; Xu, J. ; Millard, R. E. ; Clark, Graeme M. ( 1994)
    The present preliminary report describes the electrophysiological response of the cochlea during long-term stimulation. The data indicate that electrical stimulation at a rate of 1000 pulses per second does not appear to adversely affect the implanted cochlea.
  • Item
    Thumbnail Image
    Cochlear pathology following chronic electrical stimulation of the auditory nerve. I: Normal hearing kittens
    Ni, Daofeng ; Shepherd, Robert K. ; Seldon, Lee ; Xu, Shi-Ang ; Clark, Graeme M. ; Millard, Rodney E. ( 1992)
    The present study examines the histopathological effects of long-term intracochlear electrical stimulation in young normal hearing animals. Eight-week old kittens were implanted with scala tympani electrode arrays and stimulated for periods of up to 1500 h using charge balanced biphasic current pulses at charge densities in the range 21-52 µC cm^-2 geom. per phase. Both click and electrically evoked auditory brainstem responses were periodically recorded to monitor the status of the hair cell and spiral ganglion cell populations. In addition, the impedance of the stimulating electrodes was measured daily to monitor their electrical characteristics during chronic implantation. Histopathological examination of the cochleas showed no evidence of stimulus induced damage to cochlear structures when compared with implanted, unstimulated control cochleas. Indeed, there was no statistically significant difference in the ganglion cell density adjacent to the stimulating electrodes when compared with a similar population in implanted control cochleas. In addition, hair cell loss, which was restricted to regions adjacent to the electrode array, was not influenced by the degree of electrical stimulation. These histopathological findings were consistent with the evoked potential recordings. Finally, electrode impedance data correlated well with the degree of tissue growth observed within the scala tympani. The present findings indicate that the young mammalian cochlea is no more susceptible to cochlear pathology following chronic implantation and electrical stimulation than is the adult.
  • Item
    Thumbnail Image
    A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens
    Ni, Daofeng ; Shepherd, Robert K. ; Clark, Graeme M. ( 1992)
    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses' for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The aptitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/ output function. The absolute latencies and interwave latencies of waves II-III , III -IV and II -IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.