Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Multichannel auditory brainstem implants: an Australian case study [Abstract]
    Hollow, Rod ; COWAN, ROBERT ; BRIGGS, ROBERT ; KAYE, ANDREW ; DOWELL, RICHARD ; Shaw, Stephanie ; Clarke, Graeme M. ( 1996)
    The multichannel Auditory Brainstem Implant (ABI) is an implantable device designed to restore a level of auditory perception in patients with bilateral acoustic neuromas, where the removal of the tumours is expected to result in a total loss of hearing. As with the cochlear implant, the ABI utilises an externally worn speech processor and headset, together with a surgically-placed receiver-stimulator and electrode array. The electrode array, developed through the collaboration of the House Ear Institute in the United States and Cochlear Corporation, consists of eight electrodes on a carrier, which is placed on the surface of the brainstem in the area of the cochlear nucleus.
  • Item
    Thumbnail Image
    A training program for use with multichannel speech perception/production tactile devices [Abstract]
    GALVIN, KARYN ; COWAN, ROBERT ; Mavrias, Gina ; Moore, Alessandra ; SARANT, JULIA ; Clark, Graeme M. ( 1996)
    Over the past ten years, there have been remarkable improvements in both conventional hearing aid technology and in the use of multichannel cochlear prostheses. These developments have resulted in improved speech perception for severely and profoundly hearing impaired adults and children. However, a small number of adults and children remain unable to benefit from either of these prosthetic approaches. This may occur as a result of medical/surgical issues, which render implantation unfeasible, or from a decision by the patient or parents that the device is inappropriate for the individual person. In these cases, use of a supplemental speech perception device employing the intact tactile modality has been advocated. A number of single and multichannel devices have been developed, both commercially and in the laboratory. One of these, the Tickle Talker, a multichannel electrotactile speech processor, has been developed and thoroughly evaluated with both adults and children at the University of Melbourne. Benefits to speech perception have been noted on both closed-set phonemic discrimination tests, and on open-set word and sentence scores, where the device was used to supplement lipreading and/or aided residual hearing. Benefits to articulation have also been noted. Recently, improved speech processing and the design of a new electrode handset have been implemented. While these factors are important to device acceptance, the critical factor in improving speech perception and production appears to be the training program which is employed with the device. The program must be based on the information available through the device, but organised to emphasize the integration of tactually-encoded speech information into open-set understanding of words and sentences if communication is to be improved. The important elements of the program will be discussed. At present, no tactile device is able to provide sufficient information for open-set speech understanding using only the tactile input. While this may be an ultimate goal, significant periods of training may be required to achieve this outcome.
  • Item
    Thumbnail Image
    Speech perception for children with different levels of residual hearing using the cochlear 22-channel cochlear prosthesis [Abstract[
    Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Del Dot, J. ; Sarant, J. Z. ; Dettman, S. ; Hollow, R. ; Herridge, S. ; Rance, G. ; Larratt, M. ; Skok, M. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1996)
    Over the past 10 years, since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne, the number of profoundly deaf children using this implant system has rapidly expanded. Longer-term experience with implanted children has led to improvements in paediatric assessment and management. Speech processing strategies have also been improved, resulting in a series of increases in speech perception benefits. Results of comparative studies of Speak and Multipeak speech processing strategies have shown that open-set word and sentence scores for a group of thirteen children evaluated over a two year period showed an advantage with the Speak speech processing strategy. The increases were noted particularly in speech perception in poor signal-to-noise conditions. Analysis has shown that consonant perception was significantly increased, due to an improved place perception. Given current speech perception scores for implanted children, it has been suggested that severely-to-profoundly deaf children currently using hearing aids could in fact benefit more from a cochlear implant. Preliminary investigation of results for children in the Melbourne and Sydney cochlear implant programs has shown that children with higher levels of preoperative residual hearing as a group do score significantly on open-set word and sentence perception tests using the implant alone. In children with lower levels of residual hearing, results were variable across the group.
  • Item
    Thumbnail Image
    Speech perception in children following habilitation with background noise [Abstract]
    Cowan, R. S. C. ; Klieve, S. ; Galvin, K. L. ; Sarant, J. Z. ; Clark, Graeme M. ( 1996)
    Recent evaluation of open-set work and sentence perception results for a group of children evaluated over a two year period showed that improvements to speech perception scores in poor signal-to-noise conditions were possible with use of the Speak speech processing strategy. The increases were noted particularly in speech perception in poor signal-to-noise conditions. However, overall scores were still lower that for hearing in quiet. As children are often in noisy environments, it was of interest to assess whether specific habilitation involving perception in controlled background noise could improve perception. A preliminary study evaluating perception of open-set words and sentences in background noise for four children has been completed. Each of the children was assessed over a six month period, using repeated assessments of connected discourse tracking, and word and sentence perception scores. At each assessment, measures were made both in quiet and in background noise. The specific signal-to-noise ration varied with each child, but was kept constant through the evaluation. During the six month period, children had weekly habilitation sessions, which included specific perceptual training in controlled background noise. Preliminary results indicate that training in ‘controlled noise’ can significantly improve speech perception results for this group of children.