Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Modulation detection interference in cochlear implant subjects
    Richardson, Louise M. ; Busby, Peter A. ; Clark, Graeme M. ( 1998)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Studies of prosody perception by cochlear implant patients
    Richardson, Louise M. ; Busby, Peter A. ; Blamey, Peter J. ; Clark, Graeme M. ( 1998)
    Prosodic information is conveyed to normally-hearing listeners by variations in acoustic fundamental frequency, amplitude envelope, and duration of speech segments. This study measured cochlear implant patients' sensitivity to these parameters in electrically coded speech. The psychophysical discrimination of electric parameters used to code prosodic information, were examined, together with prosody perception using speech processing strategies which modified the contributions of these parameters. Patients were implanted with the Cochlear Limited prosthesis and used the MPEAK speech processing strategy. In the psychophysical studies, difference limens were measured for steady-state and time-varying stimuli, of different pulse rates and pulse durations, over a series of different stimulus durations. These limens were obtained using an adaptive procedure which converged on the 50 per cent correct point. In the prosody perception studies, performance was measured for the MPEAK strategy and for strategies which modified the contributions of pulse rate and pulse duration. Data were collected for five tests of prosodic contrasts. Difference limens for steady-state pulse rates were larger at higher rates (17 per cent at 400 pulses/s) than at lower rates (6 per cent at 100 pulses/s). For some patients, limens for the time-varying pulse rates were larger than those for the steady-state pulse rates while for the other patients, the limens were similar. Difference limens for pulse duration were 0.3 dB, corresponding to 4 per cent of the dynamic range, for steady-state stimuli and doubled in size for the time-varying stimuli. Prosody perception performance was generally poorer for the modified strategies than for the MPEAK strategy, suggesting that the removal of information coded by pulse rate and pulse duration reduced the perception of prosodic contrasts.
  • Item
    Thumbnail Image
    Cochlear implant place psychophysics: 1. Pitch estimation with deeply inserted electrodes
    Cohen, Lawrence T. ; Busby, Peter A. ; Whitford, Lesley A. ; Clark, Graeme M. ( 1996)
    Numerical estimation of pitch was performed by 8 adult subjects implanted with cochlear prostheses manufactured by Cochlear Limited. The electrode arrays had been inserted into the scala tympani to between one and one and a half turns of the cochlea. Using bipolar stimulation, the pitch estimates for each subject showed an overall reduction with insertion depth of the stimulated electrode. However, for several subjects, after decreasing regularly for the more basal electrodes, pitch estimates showed an abrupt decrease, followed in some cases by a region of low pitch. Two of the subjects, implanted with a modified electrode array, the '20 + 2' which allowed monopolar in addition to bipolar stimulation, exhibited an abrupt decrease in pitch estimate with bipolar but not with monopolar stimulation. In these two subjects, for stimulating electrodes inserted more deeply than about three quarters of a turn, bipolar stimuli produced lower pitch sensations, and presumably more apical neural excitation patterns, than monopolar stimuli.
  • Item
    Thumbnail Image
    Cochlear implant place psychophysics: 2. Comparison of forward masking and pitch estimation data
    Cohen, Lawrence T. ; Busby, Peter A. ; Clark, Graeme M. ( 1996)
    Results for forward masking and numerical estimation of pitch were compared in a group of 6 adult subjects implanted with cochlear prostheses manufactured by Cochlear Limited. Data were collected for bipolar +1 stimulation in all subjects, and for stimulation in one other mode, either common ground or monopolar, for all subjects but one. The pitch data show various irregularities and in each case can be seen to be broadly consistent with the corresponding forward masking data. It is shown that a 'centre of gravity' of the forward masking distribution varies with masker electrode in a manner that is qualitatively very similar to the variation of pitch estimate. It is suggested that, while pitch estimation results are consistent with those from forward masking, the latter contain more detailed information that may be useful in understanding intersubject variations in speech comprehension.
  • Item
    Thumbnail Image
    Pitch perception for different modes of stimulation using the Cochlear multiple-electrode prosthesis
    Busby, P. A. ; Whitford, L. A. ; Blamey, P. J. ; Richardson, L. M. ; Clark, Graeme M. ( 1994)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam. W ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Pty Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11 to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.
  • Item
    Thumbnail Image
    The development of the Melbourne/Cochlear multiple-channel cochlear implant for profoundly deaf children
    Clark, Graeme M. ; Busby, Peter A. ; Dowell, Richard C. ; Dawson, Pamella W. ; Pyman, Brian C. ; Webb, Robert L. ; Staller, Steven J. ; Beiter, Anne L. ; Brimacombe, Judith A. ( 1992)
    In 1978-79, a speech processing strategy which extracted the voicing (FO) and second formant (F2) frequencies and presented these as rate and place of stimulation respectively to residual auditory nerve fibres was developed for the University of Melbourne's prototype multiple-channel receiver-stimulator (Clark et aI1977, Clark et a11978, Tong et aI1980). This speech processing strategy was shown to provide post linguistically deaf adults with some open-set speech comprehension using electrical stimulation alone, and considerable help when used in combination with lipreading (Clark et al 1981).
  • Item
    Thumbnail Image
    Psychophysical studies using a multiple-electrode cochlear implant in patients who were deafened early in life.
    Busby, P. A. ; Tong, Y. C. ; Clark, Graeme M. ( 1992)
    Psychophysical studies were conducted on 10 cochlear implant patients, between 5 and 23 years of age at the time of surgery, who were deafened prior to 4 years of age. The multiple-electrode prosthesis manufactured by Cochlear Ltd. was used. Identification studies, the recognition of 2-4 stimuli after some training, were conducted on 3 of the 10 patients. For currentlevel and repetition rate identification, performance was comparable to that observed for postlingual adult patients. For electrode position identification, however, performance was much poorer than that observed for postlingual adults. In general, the difference limens for current level, repetition rate and duration, and the gap detection thresholds were similar to those observed for postlingual adults. For 3 patients whose etiology was Usher's syndrome, the repetition rate limens at higher rates were larger than those of the other patients. The limens for electrode position, measured in a discrimination task, were 1-3 electrodes for most patients. However, for 3 patients, limens of 6-10 electrodes were recorded. For numerosity judgements, the counting of stimuli in a temporal series as a function of the rate of presentation, the patients were less successful at counting for rates of 3-8/s than for lower rates (1-2/s).
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam W. ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Ply Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.