Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 23
  • Item
    Thumbnail Image
    Speech perception in implanted children: influence of preoperative residual hearing on outcomes [Abstract]
    Cowan, R. S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. ; Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; HOLLOW, RODNEY ; Rehn, C. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1998)
    Since the first child was implanted with the Nucleus 22-channel prosthesis in Melbourne in 1985, several thousand children world-wide have now benefitted from this technology. More effective paediatric assessment and management procedures have now been developed, allowing cochlear implants to be offered to children under the age of 2 years. Improvements in speech processing strategy have also been implemented in the Nucleus implant system, resulting in increased mean speech perception benefits for implanted adults. Although a range of performance on formal measures of hearing, speech or language has been reported for children using implants, results from the first decade of implant experience consistently show that significant benefits are available to children receiving their implant at an early age. Reported speech perception results for implanted children show that a considerable proportion (60%) of paediatric patients in the Melbourne and Sydney clinics are able to understand some open-set speech using electrical stimulation alone. These results, and the upward trend of mean speech perception benefits shown for postlinguistically deafened adults have raised questions as to whether severely, or severely-to-profoundly deaf children currently using hearing aids would in fact benefit more from a cochlear implant. To investigate the potential influence of the degree of preoperative residual hearing on postoperative speech perception, results for all implanted children in the Melbourne and Sydney cochlear implant programs were analysed. Results showed that as a group, children with higher levels of preoperative residual hearing were consistently more likely to achieve open-set speech perception benefits. Potential factors in this finding could be higher levels of ganglion cell survival or greater patterning of the auditory pathways using conventional hearing aids prior to implantation. Conversely, children with the least preoperative residual hearing were less predictable, with some children achieving open-set perception, and others showing more limited closed-set benefits to perception. For these children, it is likely that preoperative residual hearing is of less significance than other factors in outcomes.
  • Item
    Thumbnail Image
    Speech perception for children with different levels of residual hearing using the cochlear 22-channel cochlear prosthesis [Abstract[
    Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Del Dot, J. ; Sarant, J. Z. ; Dettman, S. ; Hollow, R. ; Herridge, S. ; Rance, G. ; Larratt, M. ; Skok, M. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1996)
    Over the past 10 years, since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne, the number of profoundly deaf children using this implant system has rapidly expanded. Longer-term experience with implanted children has led to improvements in paediatric assessment and management. Speech processing strategies have also been improved, resulting in a series of increases in speech perception benefits. Results of comparative studies of Speak and Multipeak speech processing strategies have shown that open-set word and sentence scores for a group of thirteen children evaluated over a two year period showed an advantage with the Speak speech processing strategy. The increases were noted particularly in speech perception in poor signal-to-noise conditions. Analysis has shown that consonant perception was significantly increased, due to an improved place perception. Given current speech perception scores for implanted children, it has been suggested that severely-to-profoundly deaf children currently using hearing aids could in fact benefit more from a cochlear implant. Preliminary investigation of results for children in the Melbourne and Sydney cochlear implant programs has shown that children with higher levels of preoperative residual hearing as a group do score significantly on open-set word and sentence perception tests using the implant alone. In children with lower levels of residual hearing, results were variable across the group.
  • Item
    Thumbnail Image
    The progress of children using the multichannel cochlear implant in Melbourne
    Cowan, R. S. C. ; Dowell, R. C. ; Hollow, R. ; Dettman, S. J. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Galvin, K. L. ; Webb, R. C. ; Pyman, B. C. ; Cousins, V. C. ; Clark, Graeme M. ( 1995)
    Multi-channel cochlear implantation in children began in Australia in 1985 and there are now close to 4000 profoundly deaf children and adolescents using the Australian implant system around the world. The aim of the implant procedure is to provide adequate hearing for speech and language development through auditory input. This contrasts with the situation for adults with acquired deafness where the cochlear implant aims to restore hearing for someone with well-developed auditory processing and language skills. As with adults, results vary over a wide range for children using the Multi-channel implant. Many factors have been suggested that may contribute to differences in speech perception for implanted children. In an attempt to better understand these factors, the speech perception results for children implanted in Melbourne were reviewed and subjected to statistical analysis. This has indicated that the amount of experience with the implant and the length of sensory deprivation are strongly correlated with perceptual results. This means that younger children are likely to perform better with an implant and that a number of years of experience are required for children to reach their full potential. The results have also indicated that educational placement and management play a crucial role in children reaching their potential. Overall, 60% of the children and adolescents in the study have reached a level of open-set speech understanding using the cochlear implant without lipreading.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    Speech perception, production and language results in a group of children using the 22-electrode cochlear implant
    Blamey, P. J. ; Dawson, P. W. ; Dettman, S. J. ; Rowland, L. C. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Rickards, F. W. ; Clark, Graeme M. ( 1992)
    Five children out of a group of nine (aged 5.5 to 19.9 years) implanted with the 22-electrode cochlear implant (Cochlear Ply. Ltd.) have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores for monosyllabic words ranged from 40% to 72%. Word scores in sentences ranged from 26% to 74%. Four of these five children were implanted during preadolescence. The fifth child, who had a progressive loss and was implanted during adolescence after a short period of very profound deafness, scored highest on all speech perception tests. The remaining four children who did not demonstrate open-set recognition were implanted during adolescence after a long duration of profound deafness. Post-operative performance on closed-set speech perception tests was better than pre-operative performance for all children. Improvements in speech and language assessments were also noted. These improvements tended to be greater for the younger children. The results are discussed with reference to variables which may contribute to successful implant use: such as age at onset, duration of profound hearing loss, age at implantation, aetiology, educational program, and the type of training provided.
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam W. ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Ply Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.
  • Item
    Thumbnail Image
    Preliminary speech perception results for children with the 22-electrode Melbourne/ cochlear hearing prosthesis
    Cowan, R. S. C. ; Dowell, R. C. ; Pyman, B. C. ; Dettman, S. J. ; Dawson, P. W. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Clark, Graeme M. ( 1993)
    The 22-electroce cochlear prosthesis developed by the University of Melbourne and Cochlear Pty. Ltd. has been shown to provide significant speech perception benefits to profoundly deafened adults. More recently, use of an improved Multipeak encoding strategy has significantly improved speech perception performance both in quiet and in noise. Benefits to speech perception in children have not as yet been fully documented, in part due to the shorter history of implant use in children and the smaller overall number of children implanted as compared with adults. The first implantation of the 22-electrode cochlear prosthesis in a child was carried out in Melbourne in January of 1985. In Melbourne, a 5-year-old child was operated on in April 1986, and a first congenitally deaf child in April 1987. The age of implantation has been progressively reduced, with the first 2-year-old child implanted in Melbourne in 1990. As at January 1992, approximately 1,200 children (under 18 years of age inclusive) have been implanted worldwide with the 22-electrode cochlear prosthesis. Of this number, approximately 50% are under the age of 6 years. The age of the child, aetiology of the hearing loss, age at onset and duration of the hearing loss, education program attended both prior to and subsequent to implantation, and parental motivation to assist in habilitation are all factors which may affect an individual child's development and progress with the device. Evaluation of performance in children is complicated by a number of issues, including the effects of delayed speech and language development, and the ability of individual children to perform auditory tests. The measure of performance chosen for any evaluation will also reflect the interests of the particular clinician. For example, effects of device use on speech production may be of interest to the speech therapist, whereas educational progress will be of primary importance to the teacher of an implanted child. However, in choosing an appropriate evaluation test to measure progress woth the cochlear prosthesis, it is vital to realize that all measures such as effects of device use on speech production, educational progress, development of language, and effects on social and communication skills depend on the child being able to accurately perceive speech information through her/his device.
  • Item
    Thumbnail Image
    Multi-channel cochlear implants for children: the Melbourne Program
    Dawson, Pam W. ; Blamey, Peter J. ; Dettman, Shani J. ; Rowland, L.C. ; Brown, A. M. ; Dowell, Richard C. ; Pyman, B. C. ; Webb, R. L. ( 1991)
    Although there have been 300 years of deaf education, profoundly-totally deaf children today on average are not able to reach the same level of achievement as their normally hearing peers (Geers & Moog, 1989). This failure of deaf children to develop their true potential is largely due to the difficulty they have in communicating with normally hearing people. During the last 300 years there have been basically two different methods of education used (The New Encyclopaedia Britannica, 1983). Firstly, one which maximises auditory and lip reading cues (auditory/oral), advocated by Juan Pablo Bonet (1620), and one which uses a series of signs to convey meaning (signing), developed by Charles-Michel (1712-89). In addition, there is a method which endeavours to combine both auditory/oral and signing approaches called total communication. In practice, however, children taught by total communication tend to receive speech more predominantly by one or other of these methods.
  • Item
    Thumbnail Image
    Multichannel cochlear implantation in children: a summary of current work at The University of Melbourne
    Dowell, Richard C. ; Dawson, Pam W. ; Dettman, Shani J. ; Shepherd, Robert K. ; Whitford, Lesley A. ; Seligman, Peter M. ; Clark, Graeme M. ( 1991)
    This paper summarizes research work relating to multichannel cochlear implantation in children at the University of Melbourne. Ongoing safety studies relating to the implantation of young children are discussed. Results of these studies suggest that special design considerations are necessary for a prosthesis to be implanted in children under the age of 2 years. Results of clinical assessment of implanted children and adolescents are also discussed in terms of speech perception, speech production, and language development, and some possible predictive factors are suggested. Preliminary data suggests that a high proportion of young children can achieve open-set speech perception with the cochlear implant given appropriate training and support. Initial results with adults using new speech processing hardware and a new coding scheme are also presented. These suggest that improved speech perception in quiet and competing noise is possible with the new system.