Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    Thumbnail Image
    A clinical report on receptive vocabulary skills in cochlear implant users
    Dawson, P. W. ; Blamey, P. J. ; Dettman, S. J. ; Barker, E. J. ; Clark, Graeme M. ( 1995)
    Objective: The aim was to measure the rate of vocabulary acquisition for cochlear implant users and compare the pre- and postoperative rates with published data for other groups with normal or impaired hearing. The hypothesis was that the postoperative rate would be greater than the preoperative rate. Design: The Peabody Picture Vocabulary Test (PPVT) was administered to 32 children, adolescents, and prelinguistically deafened adults implanted with the 22-electrode cochlear implant. Age at implantation ranged from 2 y r 6 mo to 20 yr and implant use ranged from 6 mo to 7 yr 8 mo. Results: The group mean postoperative performance at various postoperative intervals was significantly higher than mean preoperative performance. Single-subject data indicated statistically significant gains over time on this test for 13 of the subjects. The mean postoperative rate of vocabulary acquisition of 1.06 times the rate for normally hearing children was significantly greater than the mean preoperative rate of 0.43. Conclusions: These rates of improvement were in accord with previous reports on smaller numbers of implant users, but could not be attributed unambiguously to use of the implant because no control group was used for this clinical work. Variables such as age at implantation, duration of profound deafness, communication mode, and speech perception skill failed to significantly predict rate of improvement on the PPVT.
  • Item
    Thumbnail Image
    A clinical report on speech production of cochlear implant users
    Dawson, P. W. ; Blamey, P. J. ; Dettman, S. J. ; Rowland, L. C. ; Barker, E. J. ; Tobey, E. A. ; Busby, P. A. ; Cowan, R. C. ( 1995)
    Objective: The aim was to assess articulation and speech intelligibility over time in a group of cochlear implant users implanted at 8 yr or over. The hypothesis was that the postoperative speech production performance would be greater than the preoperative performance. Design: A test of intelligibility using sentences and an articulation test measuring non-imitative elicited speech were administered to 11 and 10 subjects, respectively, who were implanted with the 22-electrode cochlear implant. Nine subjects received both tests. Age at implantation ranged from 8 yr to 20 yr and implant use ranged from 1 yr to 4 yr 5 mo. Results: For both the intelligibility and articulation tests roughly half of the subjects showed significant improvements over time and group mean postoperative performance significantly exceeded preoperative performance. Improvements occurred for front, middle, and back consonants; for stops, fricatives, and glides and for voiceless and voiced consonants. Conclusions: Despite being deprived of acoustic speech information for many childhood years, roughly half of the patients assessed showed significant gains in speech intelligibility and articulation postimplantation. The lack of a control group of non-implanted patients means that we cannot separate out the influence of the implant on speech production from other influences such as training and tactile-kinaesthetic feedback.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Improved electrotactile speech processor: Tickle Talker
    Cowan, R. S. C. ; Galvin, K. L. ; Sarant, J. Z. ; Millard, R. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    The Tickle Talker, an eight-channel electrotactile speech processor, has been developed from continuing research at the University of Melbourne. 'The development of the device has focused on production of reliable speech-processing hardware, design of cosmetically and ergonometrically acceptable electrode transducers, implementation of acute and chronic biomedical studies demonstrating device safety, design and testing of alternative speech-encoding strategies to provide benefit to speech perception and production, and design and testing of appropriate training methods for optimizing benefits. The Tickle Talker has been shown to provide benefits in supplementing lipreading or aided residual hearing for hearing-impaired adults and children. Improvements in speech processing have resulted in an increase in benefits to speech perception, and open the way for more flexible approaches to encoding speech input. Continuing development of the electrode circuitry has now produced a device that is robust and has an extended battery life. Safety studies have clearly demonstrated that there are no long-term contraindications to device use. The results suggest that the device has a role to play in rehabilitation programs for severely and profoundly hearing-impaired adults and children.
  • Item
    Thumbnail Image
    A review of the biological, psychophysical, and speech processing principles used to design the tickle talker
    Blamey, P. J. ; Cowan, R. S. C. ; Alcantara, J. I. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Clark, Graeme M. ( 1992)
    The Tickle Talker is a wearable electrotactile speech processor, designed to be used by profoundly hearing-impaired children and adults in conjunction with lipreading and residual hearing. The effectiveness of such a device is affected by an interaction between biological, human engineering, psychophysical, and speech processing considerations. The requirements, the design principles, and the performance of the Tickle Talker in each of these areas will be discussed. Electrical stimulation of the nerve bundles lying along the sides of the fingers was chosen to provide safe, comfortable, energy-efficient stimulation of a well-organised and sensitive part of the tactile sensory system. This is achieved at a small cost to the appearance and mobility of one hand when using the Tickle Talker. The biphasic pulse waveform used to stimulate the nerve bundles has been chosen to ensure a biologically safe stimulus. The electrical parameters (pulse duration, pulse rate, and electrode position) that are used to encode speech information are varied within ranges that are matched to the characteristics of the tactile sense. The usable ranges and information-carrying potential of each of these parameters have been assessed in psychophysical experiments. A comparison of these results with similar experimental data for cochlear implant and hearing aid users is instructive in assessing the possible limitations of tactile and auditory speech processors. The results discussed will include the discrimination and identification of stimuli differing in intensity, duration and pulse rate; the identification of different spatial patterns of stimulation, and the detection of gaps in stimuli. In most respects, the tactile results are similar to the corresponding auditory measures. The resolution of temporal differences such as pulse rate discrimination or gap detection are generally not as good as in the auditory case, but may be as good or better than the corresponding results for some profoundly hearing-impaired individuals. The speech processor used in the Tickle Talker is a "feature extraction" device that explicitly estimates the second formant frequency, amplitude envelope, and fundamental frequency of the voice and encodes them in terms of electrode position, pulse width and pulse rate of the electrical stimulation pattern. Consideration of the psychophysical results and the speech information available from these parameters allows optimization of the Tickle Talker's operation and a broad estimation of its potential performance in speech discrimination. The perception of duration and place of articulation (front/back) of vowels, and the manner and voicing of consonants are expected to be improved by the Tickle Talker. Prosodic variations conveyed by pulse rate are expected to be perceived by some users, but not all. High frequency consonants such as: /s/,/z/./?/, and /t?/ are encoded in a particularly salient manner by the Tickle Talker.
  • Item
    Thumbnail Image
    Design fundamentals for a tactile speech processor: i) encoding of speech information, and ii) biomedical safety considerations [Abstract]
    Cowan, Robert S. C. ; Blamey, Peter J. ; Sarant, Julia Z. ; Galvin, Karyn L. ; Clark, Graeme M. ( 1992)
    Approaches to providing speech information through the tactual modality have varied in: number and spatial location of transducers; method of interfacing with the skin's sensory apparatus; and content of speech information presented. Use of a multiple speech feature encoding approach to design of a tactile device was implemented in the wearable multichannel electrotactile speech processor or Tickle Talker developed at the University of Melbourne. Psychophysical studies established that subjects could discriminate salient electrical parameters in the tactual display, and that this information could be used to discriminate acoustic speech feature contrasts. Results with normally-hearing and hearing-impaired adults and children using an FOF2 encoding strategy showed improved discrimination scores for closed-set speech feature discrimination batteries, closed-set vowel and consonant identification tasks, as well as for open-set word and sentence comprehension. Based on analyses of tactual encoding of speech features, alternative speech processing strategies designed to increase the quality of speech information available were evaluated. Results for two hearing-impaired adults showed improved feature discrimination with the addition of a voicing signal to the FOF2 strategy. Biomedical safety investigations conducted concurrently have established that the electrical parameters of the stimulus waveform, electrode handset design, and electrical circuitry of the device are free from potential risks. Longer-term physiological assessments included measures of possible effects of electrical stimulation on tactual sensitivity, finger temperature, finger and hand blood flow, electrical thresholds and maximum comfortable levels, and on central nervous system, function as measured by EEG. Results of the kinesthetic, vascular and neurological assessments showed no significant contraindications which might limit application or long-term use of the device.
  • Item
    Thumbnail Image
    Speech perception, production and language results in a group of children using the 22-electrode cochlear implant
    Blamey, P. J. ; Dawson, P. W. ; Dettman, S. J. ; Rowland, L. C. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Rickards, F. W. ; Clark, Graeme M. ( 1992)
    Five children out of a group of nine (aged 5.5 to 19.9 years) implanted with the 22-electrode cochlear implant (Cochlear Ply. Ltd.) have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores for monosyllabic words ranged from 40% to 72%. Word scores in sentences ranged from 26% to 74%. Four of these five children were implanted during preadolescence. The fifth child, who had a progressive loss and was implanted during adolescence after a short period of very profound deafness, scored highest on all speech perception tests. The remaining four children who did not demonstrate open-set recognition were implanted during adolescence after a long duration of profound deafness. Post-operative performance on closed-set speech perception tests was better than pre-operative performance for all children. Improvements in speech and language assessments were also noted. These improvements tended to be greater for the younger children. The results are discussed with reference to variables which may contribute to successful implant use: such as age at onset, duration of profound hearing loss, age at implantation, aetiology, educational program, and the type of training provided.
  • Item
    Thumbnail Image
    Comparison of current speech coding strategies
    Whitford, L. A. ; Seligman, P. M. ; Blamey, Peter J. ; McDermott, H. J. ; Patrick, J. F. ( 1993)
    This paper reports on two studies carried out at the University of Melbourne jointly with Cochlear Pty Ltd. The studies demonstrated substantial speech perception improvements over the current Multipeak strategy in background noise.
  • Item
    Thumbnail Image
    Radiologic evaluation of multichannel intracochlear implant insertion depth
    Marsh, Michael A. ; XU, JIN ; Blamey, Peter J. ; Whitford, Lesley A. ; Xu, Shi-Ang ; Silverman, Julianna M. ; Clark, Graeme, M. ( 1993)
    Postoperative plain film x-rays are necessary in all multichannel cochlear implant patients to confirm intracochlear position, detect possible electrode kinking, and provide a reference if postoperative slippage occurs. In addition, precise documentation of multichannel intracochlear electrode insertion depths is necessary for comparison of speech recognition results among patients and may be of use for future speech processing strategies. In the present study, a method has been devised, using a modified Stenver's view, to more accurately document insertion depths of the electrode array and location of individual electrodes on 50 multichannel cochlear implant patients. Surgical estimates of insertion depth are shown to have great variability in regard to distance along the basilar membrane when compared with x-ray documentation. Additionally, there is preliminary evidence that insertion depth, as determined by x-ray studies, has a strong correlation with open-set speech discrimination.