Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    Thumbnail Image
    Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis
    Cowan, Robert S. C. ; Galvin, Karyn L. ; KLIEVE, SHARON ; Barker, Elizabeth J. ; Sarant, Julia Z. ; DETTMAN, SHANI ; Hollow, Rod ; RANCE, GARY ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. ( 1997)
    It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise. Since the first implantation of the Nucleus device in a profoundly hearing-impaired child in Melbourne in 1985, there has been a rapid growth in the number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation -resulting from earlier detection of deafness; (2) improved hardware and surgical techniques -allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise.
  • Item
    Thumbnail Image
    The importance of different frequency bands to the speech perception of cochlear implantees [Abstract]
    Henry, Belinda A. ; McKay, Colette M. ; McDermott, Hugh J. ; Clark, Graeme M. ( 1996)
    It is well known that cochlear implantees exhibit a wide range of speech perception ability. Understanding the reason for this variability may lead to improved speech processors. This study investigates whether implantees rely on different areas of the speech spectrum for speech cues, compared to normally hearing listeners, and whether poor performers rely on different spectral areas than better performers. Six subjects with the Mini System 22 implant and using the SPEAK strategy participated in this experiment. Scores for monosyllabic words were obtained using the full speech spectrum and with selected frequency bands removed from the subjects’ speech processor maps. The Articulation Index (AI) is a measure of the proportion of speech information available to a listener, and the relative contribution to AI from different frequency bands is termed the Importance Function. The five frequency bands studied in this experiment were determined to be of equal importance to normally hearing listeners for the speech material used. The scores for each implantee were transformed into AI values, and hence the relative importance of the bands was determined. This relative importance was compared between the implantee group and normally hearing listeners to determine the way in which speech perception by electrical stimulation varies from that by acoustical stimulation. Comparisons were also made between individual implantees to determine whether correlations exist between their speech perception ability and their use of cues in different parts of the spectrum. Further research will determine whether the differences among implantees are correlated with their ability to perceive changes in stimulation place or temporal characteristics.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Initial investigation of the efficacy and biosafety of sodium hyaluronate (healon) as an aid to electrode array insertion
    Donnelly, M. J. ; Cohen, L. T. ; Clark, Graeme M. ( 1995)
    Stimulation of residual neural elements by electrodes inserted into the cochlea to produce the perception of speech and environmental sounds in profoundly deaf people is a fundamental aim of cochlear implantation. The multiple-channel cochlear implant utilizes the tonotopic arrangement of the organ of Corti to also achieve place pitch perception by stimulating different electrode bands. It may be possible to improve the range of pitches perceived by present cochlear implant patients by inserting the electrode array more deeply. To help achieve this, investigators have used sodium hyaluronate as a lubricant for electrode insertions. 1 It was felt deeper insertions were produced with sodium hyaluronate. Before introducing this substance as part of the surgical protocol for the Melbourne Cochlear Implant Clinic, it was decided to investigate its efficacy in aiding deeper insertions of the electrode. In addition, it was also necessary to determine if sodium hyaluronate, in conjunction with cochlear implantation, had adverse effects on the inner ear. This study was undertaken to address these issues.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Speech perception in children using the advanced Speak speech-processing strategy
    Cowan, R. S. C. ; Brown, C. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Barker, E. J. ; Shaw, S. ; King, A. ; Skok, M. ; Seligman, P. M. ; Dowell, R. C. ; Everingham, C. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1995)
    The Speak speech-processing strategy, developed by the University of Melbourne and commercialized by Cochlear Pty Limited for use in the new Spectra 22 speech processor, has been shown to provide improved speech perception for adults in both quiet and noisy situations. The present study evaluated the ability of children experienced in the use of the Multipeak (Mpeak) speech-processing strategy (implemented in the Nucleus Minisystem-22 cochlear implant) to adapt to and benefit from the advanced Speak speech-processing strategy (implemented in the Nucleus Spectra 22 speech processor). Twelve children were assessed using Mpeak and Speak over a period of 8 months. All of the children had over 1 year's previous experience with Mpeak, and all were able to score significantly on open-set word and sentence tests using the cochlear implant alone. Children were assessed with both live-voice and recorded speech materials, including Consonant-Nucleus-Consonant monosyllabic words and Speech Intelligibility Test sentences. Assessments were made in both quiet and in noise. Assessments were made at 3-week intervals to investigate the ability of the children to adapt to the new speech-processing strategy. For most of the children, a significant advantage was evident when using the Speak strategy as compared with Mpeak. For 4 of the children, there was no decrement in speech perception scores immediately following fitting with Speak. Eight of the children showed a small (10% to 20%) decrement in speech perception scores for between 3 and 6 weeks following the changeover to Speak. After 24 weeks' experience with Speak, 11 of the children had shown a steady increase in speech perception scores, with final Speak scores higher than for Mpeak. Only 1 child showed a significant decrement in speech perception with Speak, which did not recover to original Mpeak levels.
  • Item
    Thumbnail Image
    Improved electrotactile speech processor: Tickle Talker
    Cowan, R. S. C. ; Galvin, K. L. ; Sarant, J. Z. ; Millard, R. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    The Tickle Talker, an eight-channel electrotactile speech processor, has been developed from continuing research at the University of Melbourne. 'The development of the device has focused on production of reliable speech-processing hardware, design of cosmetically and ergonometrically acceptable electrode transducers, implementation of acute and chronic biomedical studies demonstrating device safety, design and testing of alternative speech-encoding strategies to provide benefit to speech perception and production, and design and testing of appropriate training methods for optimizing benefits. The Tickle Talker has been shown to provide benefits in supplementing lipreading or aided residual hearing for hearing-impaired adults and children. Improvements in speech processing have resulted in an increase in benefits to speech perception, and open the way for more flexible approaches to encoding speech input. Continuing development of the electrode circuitry has now produced a device that is robust and has an extended battery life. Safety studies have clearly demonstrated that there are no long-term contraindications to device use. The results suggest that the device has a role to play in rehabilitation programs for severely and profoundly hearing-impaired adults and children.
  • Item
    Thumbnail Image
    Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing
    Clark, Graeme M. ; Shute, S. A. ; Shepherd, R. K. ; Carter, T. D. ( 1995)
    This study was undertaken to find out how new bone is produced in the implanted cochlea, and the effects of fibrous tissue and new bone growth on electrode-tissue impedance. This knowledge is essential, as bone and fibrous tissue in the cochlea could account for variations in patients' speech perception performance. The study was also carried out to examine the effects of implantation on residual hearing. This information is also important, as cochlear implant speech perception results in profoundly deaf people are now better on average than severely or profoundly deaf people obtain with a hearing aid. Consequently, more people will need to be considered for cochlear implantation in ears with some residual hearing. In this case we need to know to what extent residual hearing is affected by implantation. (From Introduction)
  • Item
    Thumbnail Image
    Speech perception for adults using cochlear implants
    Dowell, Richard C. (Whurr, 1994)
    A mere 16 years ago, the title of this chapter would have created considerable consternation in audiological circles. A high proportion of otologists and audiologists would have wondered, with good reason, about the potential content of such a chapter. In 1977, there were certainly cochlear implants in use with reported benefits, but reliable documentation of any useful speech perception under controlled conditions was difficult to find. The rapid development of cochlear prostheses since that time has led to thousands of profoundly hearing-impaired adults obtaining benefits for speech perception, and there is now no doubt regarding the efficacy of such devices. This chapter will provide a brief overview of this rapid improvement in the speech perception of adult cochlear implant users, consider some of the reasons for this improvement, and discuss some of the factors that may influence speech perception performance for the individual user. (From Introduction)
  • Item
    Thumbnail Image
    Speech perception, production and language results in a group of children using the 22-electrode cochlear implant
    Blamey, P. J. ; Dawson, P. W. ; Dettman, S. J. ; Rowland, L. C. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Rickards, F. W. ; Clark, Graeme M. ( 1992)
    Five children out of a group of nine (aged 5.5 to 19.9 years) implanted with the 22-electrode cochlear implant (Cochlear Ply. Ltd.) have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores for monosyllabic words ranged from 40% to 72%. Word scores in sentences ranged from 26% to 74%. Four of these five children were implanted during preadolescence. The fifth child, who had a progressive loss and was implanted during adolescence after a short period of very profound deafness, scored highest on all speech perception tests. The remaining four children who did not demonstrate open-set recognition were implanted during adolescence after a long duration of profound deafness. Post-operative performance on closed-set speech perception tests was better than pre-operative performance for all children. Improvements in speech and language assessments were also noted. These improvements tended to be greater for the younger children. The results are discussed with reference to variables which may contribute to successful implant use: such as age at onset, duration of profound hearing loss, age at implantation, aetiology, educational program, and the type of training provided.