Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis
    Cowan, Robert S. C. ; Galvin, Karyn L. ; KLIEVE, SHARON ; Barker, Elizabeth J. ; Sarant, Julia Z. ; DETTMAN, SHANI ; Hollow, Rod ; RANCE, GARY ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. ( 1997)
    It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise. Since the first implantation of the Nucleus device in a profoundly hearing-impaired child in Melbourne in 1985, there has been a rapid growth in the number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation -resulting from earlier detection of deafness; (2) improved hardware and surgical techniques -allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Speech perception in children using the advanced Speak speech-processing strategy
    Cowan, R. S. C. ; Brown, C. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Barker, E. J. ; Shaw, S. ; King, A. ; Skok, M. ; Seligman, P. M. ; Dowell, R. C. ; Everingham, C. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1995)
    The Speak speech-processing strategy, developed by the University of Melbourne and commercialized by Cochlear Pty Limited for use in the new Spectra 22 speech processor, has been shown to provide improved speech perception for adults in both quiet and noisy situations. The present study evaluated the ability of children experienced in the use of the Multipeak (Mpeak) speech-processing strategy (implemented in the Nucleus Minisystem-22 cochlear implant) to adapt to and benefit from the advanced Speak speech-processing strategy (implemented in the Nucleus Spectra 22 speech processor). Twelve children were assessed using Mpeak and Speak over a period of 8 months. All of the children had over 1 year's previous experience with Mpeak, and all were able to score significantly on open-set word and sentence tests using the cochlear implant alone. Children were assessed with both live-voice and recorded speech materials, including Consonant-Nucleus-Consonant monosyllabic words and Speech Intelligibility Test sentences. Assessments were made in both quiet and in noise. Assessments were made at 3-week intervals to investigate the ability of the children to adapt to the new speech-processing strategy. For most of the children, a significant advantage was evident when using the Speak strategy as compared with Mpeak. For 4 of the children, there was no decrement in speech perception scores immediately following fitting with Speak. Eight of the children showed a small (10% to 20%) decrement in speech perception scores for between 3 and 6 weeks following the changeover to Speak. After 24 weeks' experience with Speak, 11 of the children had shown a steady increase in speech perception scores, with final Speak scores higher than for Mpeak. Only 1 child showed a significant decrement in speech perception with Speak, which did not recover to original Mpeak levels.
  • Item
    Thumbnail Image
    Speech perception for adults using cochlear implants
    Dowell, Richard C. (Whurr, 1994)
    A mere 16 years ago, the title of this chapter would have created considerable consternation in audiological circles. A high proportion of otologists and audiologists would have wondered, with good reason, about the potential content of such a chapter. In 1977, there were certainly cochlear implants in use with reported benefits, but reliable documentation of any useful speech perception under controlled conditions was difficult to find. The rapid development of cochlear prostheses since that time has led to thousands of profoundly hearing-impaired adults obtaining benefits for speech perception, and there is now no doubt regarding the efficacy of such devices. This chapter will provide a brief overview of this rapid improvement in the speech perception of adult cochlear implant users, consider some of the reasons for this improvement, and discuss some of the factors that may influence speech perception performance for the individual user. (From Introduction)
  • Item
    Thumbnail Image
    Speech perception, production and language results in a group of children using the 22-electrode cochlear implant
    Blamey, P. J. ; Dawson, P. W. ; Dettman, S. J. ; Rowland, L. C. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Rickards, F. W. ; Clark, Graeme M. ( 1992)
    Five children out of a group of nine (aged 5.5 to 19.9 years) implanted with the 22-electrode cochlear implant (Cochlear Ply. Ltd.) have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores for monosyllabic words ranged from 40% to 72%. Word scores in sentences ranged from 26% to 74%. Four of these five children were implanted during preadolescence. The fifth child, who had a progressive loss and was implanted during adolescence after a short period of very profound deafness, scored highest on all speech perception tests. The remaining four children who did not demonstrate open-set recognition were implanted during adolescence after a long duration of profound deafness. Post-operative performance on closed-set speech perception tests was better than pre-operative performance for all children. Improvements in speech and language assessments were also noted. These improvements tended to be greater for the younger children. The results are discussed with reference to variables which may contribute to successful implant use: such as age at onset, duration of profound hearing loss, age at implantation, aetiology, educational program, and the type of training provided.
  • Item
    Thumbnail Image
    Rehabilitation strategies for adult cochlear implant users
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    This paper summarizes open-set speech perception results using audition alone for a large group of adult Nucleus cochlear implant users in Melbourne. The results show wide variation in performance but significant improvement over the years from 1982 to 1995. Analysis of these results shows that speech processor developments have made the major contribution to this improvement over this time. Recent results for patients using the SPECTRA-SPEAK processor show !hat most subjects obtain good speech perception within six months of implantation and the need for intensive auditory training is minimal for many of these patients. Postoperative care should encourage consistent device use by providing opportunities for success and providing long term technical support for implant users. In some cases, including elderly patients, those with long term profound deafness, and those with special needs, there will still be a need for additional rehabilitation and auditory training support.
  • Item
    Thumbnail Image
    Factors affecting outcomes in children with cochlear implants
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    Open-set speech perception tests were completed for a group of 52 children and adolescents who were long-term users of the Nucleus multiple channel cochlear prosthesis. Results showed mean scores for the group of 32.4% for open-set BKE sentences and 48.1% for phonemes in open-set monosyllabic words. Over 80% of the group performed significantly on these tas1cs. Age at implantation was identified as a significant factor affecting speech perception performance with improved scores for children implanted early. This factor was evident in the results at least down to the age of three years. Duration.. of profound hearing loss, progressive hearing loss, educational program and preoperative residual hearing were also identified as significant factors that may affect speech perception performance.
  • Item
    Thumbnail Image
    Speech perception in implanted children: effects of speech processing strategy and residual hearing
    Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; Hollow, R. ; Rehn, C. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. (Mendoza Editor, 1997)
    The ability of implanted children to adapt to different speech processing strategies has been demonstrated for the Nucleus implant system. Children previously experienced with the Multipeak speech processing strategy. were able to gain significant improvements in consonant, word and sentence perception using the Speak speech processing strategy. suggesting some degree of neural plasticity in neural-auditory coding. Of 192 implanted children with different degrees of preoperative residual hearing, 65% were found to obtain significant scores on open-set speech materials using electrical stimulation alone. Those children with more residual hearing had a greater probability of achieving open-set understanding and at a minimum level, perceived high frequency consonant information which would not have been available through conventional hearing aids.
  • Item
    Thumbnail Image
    Speech perception in implanted children: effects of preoperative residual hearing and speech processing strategy [Abstract]
    Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; HOLLOW, RODNEY ; Rehn, C. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. ( 1997)
    Since the first child was implanted with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, the number of implanted children world-wide has rapidly expanded. Over this period, more effective paediatric assessment and management procedures have developed, allowing cochlear implants to be offered to children under the age of 2 years. In addition, a succession of improved speech processing strategies have been implemented in the Nucleus implant system, resulting in increased mean speech perception benefits for implanted adults. Research in the Melbourne and Sydney Cochlear Implant Clinics has also demonstrated that young children can adapt to and benefit from improved speech processing strategies such as the Speak strategy. Reported speech perception results for implanted children show that a considerable proportion (60%) of paediatric patients in the Melbourne and Sydney clinics are able to understand some open set speech using electrical stimulation alone. These results, and the upward trend of speech perception benefits to improve over time with advances in speech processing. have raised questions as to whether severely, or severely-to-profoundly deaf children currently using hearing aids would in fact benefit more from a cochlear implant. To investigate the potential effect of the level of preoperative residual hearing on postoperative speech perception. results for all implanted children in the Melbourne and Sydney cochlear implant programs were analysed. Results showed that as 8 group, children with higher levels of preoperative residual hearing were consistently more likely to achieve open-set speech perception benefits. Potential factors in this finding could be higher levels of ganglion cell survival or greater patterning of the auditory pathways using conventional hearing aids prior to implantation. Conversely, children with the least preoperative residual hearing were less predictable, with some children achieving open-set perception, and others showing more limited closed-set benefits to perception. For these children, it is likely that preoperative residual hearing is of less significance than other factors in outcomes.