Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    No Preview Available
    Can we prevent cochlear implant recipients from developing pneumococcal meningitis?
    Wei, BPC ; Robins-Browne, RM ; Shepherd, RK ; Clark, GM ; O'Leary, SJ (Oxford University Press (OUP), 2008-01-01)
    The restoration of hearing to persons with severely or profoundly impaired hearing by means of a cochlear implant is one of the great achievements of bionics applied to medicine. However, pneumococcal meningitis in implant recipients has received high profile public attention as a result of the US Food and Drug Administration's public health notification and recent media attention. Worldwide, 118 of the 60,000 people who received cochlear implants over the past 20 years have acquired meningitis, causing deep concern in the international medical community. This review provides answers to pediatricians, internists, and infectious diseases doctors who have patients with cochlear implants and who have questions about the safety of the cochlear implant from both the clinical and scientific research perspectives. Both clinical and laboratory research support the notion that pneumococcal meningitis is more likely in patients who receive cochlear implantation, and that the surgical insertion technique and the cochlear implant design should be nontraumatic, and that all cochlear implant recipients should be offered vaccination against Streptococcus pneumoniae.
  • Item
    Thumbnail Image
    Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes
    Evans, AJ ; Thompson, BC ; Wallace, GG ; Millard, R ; O'Leary, SJ ; Clark, GM ; Shepherd, RK ; Richardson, RT (WILEY, 2009-10)
    Release of neurotrophin-3 (NT3) and brain-derived neurotrophic factor (BDNF) from hair cells in the cochlea is essential for the survival of spiral ganglion neurons (SGNs). Loss of hair cells associated with a sensorineural hearing loss therefore results in degeneration of SGNs, potentially reducing the performance of a cochlear implant. Exogenous replacement of either or both neurotrophins protects SGNs from degeneration after deafness. We previously incorporated NT3 into the conducting polymer polypyrrole (Ppy) synthesized with para-toluene sulfonate (pTS) to investigate whether Ppy/pTS/NT3-coated cochlear implant electrodes could provide both neurotrophic support and electrical stimulation for SGNs. Enhanced and controlled release of NT3 was achieved when Ppy/pTS/NT3-coated electrodes were subjected to electrical stimulation. Here we describe the release dynamics and biological properties of Ppy/pTS with incorporated BDNF. Release studies demonstrated slow passive diffusion of BDNF from Ppy/pTS/BDNF, with electrical stimulation significantly enhancing BDNF release over 7 days. A 3-day SGN explant assay found that neurite outgrowth from explants was 12.3-fold greater when polymers contained BDNF (p < 0.001), although electrical stimulation did not increase neurite outgrowth further. The versatility of Ppy to store and release neurotrophins, conduct electrical charge, and act as a substrate for nerve-electrode interactions is discussed for specialized applications such as cochlear implants.
  • Item
    Thumbnail Image
    Conducting polymers, dual neurotrophins and pulsed electrical stimulation - Dramatic effects on neurite outgrowth
    Thompson, BC ; Richardson, RT ; Moulton, SE ; Evans, AJ ; O'Leary, S ; Clark, GM ; Wallace, GG (ELSEVIER SCIENCE BV, 2010-01-25)
    In this study the synergistic effect of delivering two neurotrophins simultaneously to encourage neuron survival and neurite elongation was explored. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were incorporated into polypyrrole (PPy) during electrosynthesis and the amounts incorporated and released were determined using iodine-125 ((125)I) radio-labelled neurotrophins. Neurite outgrowth from cochlear neural explants grown on the conducting polymer was equivalent to that on tissue culture plastic but significantly improved with the incorporation of NT-3 and BDNF. Neurite outgrowth from explants grown on polymers containing both NT-3 and BDNF showed significant improvement over PPy doped only with NT-3, due to the synergistic effect of both neurotrophins. Neurite outgrowth was significantly improved when the polymer containing both neurotrophins was electrically stimulated. It is envisaged that when applied to the cochlear implant, these conducting and novel polymer films will provide a biocompatible substrate for storage and release of neurotrophins to help protect auditory neurons from degradation after sensorineural hearing loss and encourage neurite outgrowth towards the electrodes.
  • Item
    Thumbnail Image
    Pneumococcal meningitis post-cochlear implantation: preventative measures.
    Wei, BPC ; Shepherd, RK ; Robins-Browne, RM ; Clark, GM ; O'Leary, SJ (Wiley, 2010-11)
    OBJECTIVE: Both clinical data and laboratory studies demonstrated the risk of pneumococcal meningitis post-cochlear implantation. This review examines strategies to prevent post-implant meningitis. DATA SOURCES: Medline/PubMed database; English articles after 1980. Search terms: cochlear implants, pneumococcus meningitis, streptococcus pneumonia, immunization, prevention. REVIEW METHODS: Narrative review. All articles relating to post-implant meningitis without any restriction in study designs were assessed and information extracted. RESULTS: The presence of inner ear trauma as a result of surgical technique or cochlear implant electrode array design was associated with a higher risk of post-implant meningitis. Laboratory data demonstrated the effectiveness of pneumococcal vaccination in preventing meningitis induced via the hematogenous route of infection. Fibrous sealing around the electrode array at the cochleostomy site, and the use of antibiotic-coated electrode array reduced the risk of meningitis induced via an otogenic route. CONCLUSION: The recent scientific data support the U.S. Food and Drug Administration recommendation of pneumococcal vaccination for the prevention of meningitis in implant recipients. Nontraumatic cochlear implant design, surgical technique, and an adequate fibrous seal around the cochleostomy site further reduce the risk of meningitis.
  • Item
    Thumbnail Image
    Pneumococcal meningitis post-cochlear implantation: potential routes of infection and pathophysiology.
    Wei, BPC ; Shepherd, RK ; Robins-Browne, RM ; Clark, GM ; O'Leary, SJ (Wiley, 2010-11)
    OBJECTIVE: This review describes the current concept of pneumococcal meningitis in cochlear implant recipients based on recent laboratory studies. It examines possible routes of Streptococcus pneumoniae infection to the meninges in cochlear implant recipients. It also provides insights into fundamental questions concerning the pathophysiology of pneumococcal meningitis in implant recipients. DATA SOURCES: Medline/PubMed database; English articles after 1960. Search terms: cochlear implants, meningitis, pneumococcus, streptococcus pneumonia. REVIEW METHODS: Narrative review. All articles relating to post-implant meningitis without any restriction in study designs were assessed and information extracted. RESULTS: The incidence of pneumococcal meningitis in cochlear implant recipients is greater than that of an age-matched cohort in the general population. Based on the current clinical literature, it is difficult to determine whether cochlear implantation per se increases the risk of meningitis in subjects with no existing risk factors for acquiring the disease. As this question cannot be answered in humans, the study of implant-related infection must involve the use of laboratory animals in order for the research findings to be applicable to a clinical situation. The laboratory research demonstrated the routes of infection and the effects of the cochlear implant in lowering the threshold for pneumococcal meningitis. CONCLUSION: The laboratory data complement the existing clinical data on the risk of pneumococcal meningitis post-cochlear implantation.
  • Item
    No Preview Available
    Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons
    Richardson, RT ; Wise, AK ; Thompson, BC ; Flynn, BO ; Atkinson, PJ ; Fretwell, NJ ; Fallon, JB ; Wallace, GG ; Shepherd, RK ; Clark, GM ; O'Leary, SJ (ELSEVIER SCI LTD, 2009-05)
    Sensorineural hearing loss is associated with gradual degeneration of spiral ganglion neurons (SGNs), compromising hearing outcomes with cochlear implant use. Combination of neurotrophin delivery to the cochlea and electrical stimulation from a cochlear implant protects SGNs, prompting research into neurotrophin-eluting polymer electrode coatings. The electrically conducting polypyrrole/para-toluene sulfonate containing neurotrophin-3 (Ppy/pTS/NT3) was applied to 1.7 mm2 cochlear implant electrodes. Ppy/pTS/NT3-coated electrode arrays stored 2 ng NT3 and released 0.1 ng/day with electrical stimulation. Guinea pigs were implanted with Ppy/pTS or Ppy/pTS/NT3 electrode arrays two weeks after deafening via aminoglycosides. The electrodes of a subgroup of these guinea pigs were electrically stimulated for 8 h/day for 2 weeks. There was a loss of SGNs in the implanted cochleae of guinea pigs with Ppy/pTS-coated electrodes indicative of electrode insertion damage. However, guinea pigs implanted with electrically stimulated Ppy/pTS/NT3-coated electrodes had lower electrically-evoked auditory brainstem response thresholds and greater SGN densities in implanted cochleae compared to non-implanted cochleae and compared to animals implanted with Ppy/pTS-coated electrodes (p<0.05). Ppy/pTS/NT3 did not exacerbate fibrous tissue formation and did not affect electrode impedance. Drug-eluting conducting polymer coatings on cochlear implant electrodes present a clinically viable method to promote preservation of SGNs without adversely affecting the function of the cochlear implant.
  • Item
    Thumbnail Image
    Renewal-process approximation of a stochastic threshold model for electrical neural stimulation
    Bruce, Ian C. ; Irlicht, Laurence S. ; White, Mark W. ; O'Leary, Stephen J. ; Clark, Graeme M. ( 2000)
    In a recent set of modelling studies we have developed a stochastic threshold model of auditory nerveresponse to single biphasic electrical pulses (Bruce et al., 1999c) and moderate rate (less than 800 pulses per second) pulse trains (Bruce et al., 1999a). In this article we derive an analytical approximation for the single-pulse model, which is then extended to describe the pulse-train model in the case of evenly timed, uniform pulses. This renewal process description provides an accurate and computationally efficient model of electrical stimulation of single auditory nerve fibers by a cochlear implant that may be extended to other forms of electrical neural stimulation.
  • Item
    Thumbnail Image
    Meningitis after cochlear implantation: the risk is low, and preventive measures can reduce this further
    Wei, Benjamin P. C. ; Clark, Graeme M. ; O'Leary, Stephen J. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ( 2007)
    Since the 1980s, more than 80 000 people have received cochlear implants worldwide. These implants are designed to enable people who are severely or profoundly deaf to experience sound and speech. Since 1990, implantation has become standard treatment for people who cannot communicate effectively despite well fitted hearing aids. Children who are deaf when they are born can perceive sound and learn to speak if they receive cochlear implants at a young age (ideally under 18 months). The use of cochlear implants has been thought to be safe. But since 2002 the number of patients with meningitis related to cochlear implantation has increased worldwide. Mortality and neurological complications after meningitis are high. We need to investigate the reasons for this and look at measures to reduce them.
  • Item
    Thumbnail Image
    Threshold shift: effects of cochlear implantation on the risk of pneumococcal meningitis
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'Leary, Stephen J. ( 2007)
    Unavailable due to copyright.
  • Item
    Thumbnail Image
    Effects of inner ear trauma on the risk of pneumococcal meningitis
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'LEARY, STEPHEN ( 2007)
    Objective: To examine the risk of pneumococcal meningitis in healthy rats that received a severe surgical trauma to the modiolus and osseous spiral lamina or the standard insertion technique for acute cochlear implantation. Design: Interventional animal studies. Subjects: Fifty-four otologically normal adult Hooded- Wistar rats. Interventions: Fifty-four rats (18 of which received a cochleostomy alone; 18, a cochleostomy and acute cochlear implantation using standard surgical techniques; and 18, a cochleostomy followed by severe inner ear trauma) were infected 4 weeks after surgery with Streptococcus pneumoniae via 3 different routes (hematogenous, middle ear, and inner ear) to represent all potential routes of bacterial infection from the upper respiratory tract to the meninges in cochlear implant recipients with meningitis. Results: Severe trauma to the osseous spiral lamina and modiolus increased the risk of pneumococcal meningitis when the bacteria were given via the middle or inner ear (Fisher exact test, P<.05). However, the risk of meningitis did not change when the bacteria were given via the hematogenous route. Acute electrode insertion did not alter the risk of subsequent pneumococcal meningitis for any route of infection. Conclusions: Severe inner ear surgical trauma to the osseous spiral lamina and modiolus can increase the risk of pneumococcal meningitis. Therefore, every effort should be made to ensure that cochlear implant design and insertion technique cause minimal trauma to the bony structures of the inner ear to reduce the risk of pneumococcalmeningitis.