Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 85
  • Item
    Thumbnail Image
    Effects of intracochlear factors on spiral ganglion cells and auditory brain stem response after long-term electrical stimulation in deafened kittens
    Araki, Susumu ; Kawano, Atsushi ; Seldon, H. Lee ; Shepherd, Robert K. ; Funasaka, Sotaro ; Clark, Graeme M. ( 2000)
    Using an animal model, we have studied the response of the auditory brain stem to cochlear implantation and the effect of intracochlear factors on this response. Neonatally, pharmacologically deafened cats (100 to more than 180 days old) were implanted with a 4-electrode array in both cochleas. Then, the left cochlea of each cat was electrically stimulated for total periods of up to 1000 hours. After a terminal 14C-2-deoxyglucose (2DG) experiment, the fraction of the right inferior colliculus with a significant accumulation of 2DG label was calculated. Using 3-dimensional computer-aided reconstruction, we examined the cochleas of these animals for spiral ganglion cell (SGC) survival and intracochlear factors such as electrode positions, degeneration of the organ of Corti, and the degree of fibrosis of the scala tympani. The distribution of each parameter was calculated along the organ of Corti from the basal end. There was a positive correlation between SGC survival and the level of fibrosis in the scala tympani, and a negative correlation between SGC survival and the degree of organ of Corti degeneration. Finally, there was a negative correlation between the 2DG-labeled inferior colliculus volume fraction and the degree of fibrosis, particularly in the 1-mm region nearest the pair of electrodes, and presumably in the basal turn.
  • Item
    Thumbnail Image
    Electrode discrimination by early-deafened subjects using the Cochlear Limited multiple electrode cochlear implant
    Busby, P. A. ; Clark, Graeme M. ( 2000)
    Objective: The aims of this study were to determine whether electrode discrimination by early-deafened subjects using the Cochlear Limited prosthesis varied at different locations on the electrode array, was influenced by the effects of auditory deprivation and experience with electric stimulation, and was related to speech perception. Design: Difference limens for electrode discrimination were measured in 16 early-deafened subjects at three positions on the array: electrodes 18 (apical), 14 (mid), and 8 (basal). Electrodes were stimulated using random variations in current level to minimize the influence of loudness cues. Assessed were correlations between the difference limens, subject variables related to auditory deprivation (age at onset of deafness, duration of deafness, and age at implantation) and auditory experience (duration of implant use and the total time period of auditory experience), and speech perception scores from two closed-set and two open-set tests. Results: The average difference limens across the three positions were less than two electrodes for 75%, of subjects, with average limens between 2 and 6.5 electrodes for the remaining 25% of subjects. Significant differences across the three positions were found for 69% of subjects. The average limens and those at the basal position positively correlated with variables related to auditory deprivation, with larger limens for subjects implanted at a later age and with a longer duration of deafness. The average limens and those at the apical position negatively correlated with closed-set speech perception scores, with lower scores for subjects with larger limens, but not with open-set scores. Speech scores also negatively correlated with variables related to auditory deprivation. Conclusions: These findings showed that early-deafened subjects were generally successful in electrode discrimination although performance varied across the array for over half the subjects. Discrimination performance was influenced by the effects of auditory deprivation, and both electrode discrimination and variables related to auditory deprivation influenced closed-set speech perception.
  • Item
    Thumbnail Image
    Pitch estimation by early-deafened subjects using a multiple-electrode cochlear implant
    Busby, P. A. ; Clark, Graeme M. ( 2000)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Calculation of interspike intervals for integrate-and-fire neurons with Poisson distribution of synaptic inputs
    Burkitt, A. N. ; Clark, Graeme M. ( 2000)
    We present a new technique for calculating the interspike intervals of integrate-and-fire neurons. There are two new components to this technique. First, the probability density of the summed potential is calculated by integrating over the distribution of arrival times of the afferent postsynaptic potentials (PSPs), rather than using conventional stochastic differential equation techniques. A general formulation of this technique is given in terms of the probability distribution of the inputs and the time course of the postsynaptic response. The expressions are evaluated in the gaussian approximation, which gives results that become more accurate for large numbers of small-amplitude PSPs. Second, the probability density of output spikes, which are generated when the potential reaches threshold, is given in terms of an integral involving a conditional probability density. A.N. Burkitt and G.M. Clark, 'Calculation of Interspike Intervals for Integrate and Fire Neurons with Poisson Distribution of Synaptic Inputs ', Neural Computation, 12:8 (August, 2000), pp. 1789-1820. © 2000 by the Massachusetts Institute of Technology. http://www.mitpressjournals.org.ezp.lib.unimelb.edu.au/toc/neco/12/8
  • Item
    Thumbnail Image
    Analysis of synchronization in response of neurons to noisy periodic synaptic input
    Burkitt, A. N. ; Clark, Graeme M. ( 2000)
    Unavailable due to copyright.
  • Item
    Thumbnail Image
    Renewal-process approximation of a stochastic threshold model for electrical neural stimulation
    Bruce, Ian C. ; Irlicht, Laurence S. ; White, Mark W. ; O'Leary, Stephen J. ; Clark, Graeme M. ( 2000)
    In a recent set of modelling studies we have developed a stochastic threshold model of auditory nerveresponse to single biphasic electrical pulses (Bruce et al., 1999c) and moderate rate (less than 800 pulses per second) pulse trains (Bruce et al., 1999a). In this article we derive an analytical approximation for the single-pulse model, which is then extended to describe the pulse-train model in the case of evenly timed, uniform pulses. This renewal process description provides an accurate and computationally efficient model of electrical stimulation of single auditory nerve fibers by a cochlear implant that may be extended to other forms of electrical neural stimulation.
  • Item
    Thumbnail Image
    Multichannel auditory brainstem implantation: the Australian experience
    Briggs, R. J. S. ; Fagan, P. ; Atlas, M. ; Kaye, A. H. ; Sheehy, J. ; Hollow, R. ; Shaw. S. ; Clark, Graeme M. (Cambridge University Press, 2000)
    The multichannel auditory brainstem implant (ABI) provides the potential for hearing restoration in patients with neuro bromatosis type 2 (NF2). Programmes for auditory brainstem implantation have been established in two Australian centres. Eight patients have been implanted under the protocol of an international multi-centre clinical trial. Three patients had ABI insertion at the time of first side tumour removal, four at second side tumour removal and one after previous bilateral surgery where there was some residual tumour. The translabyrinthine approach was used in all cases. Successful positioning of the electrode array was achieved in seven of eight patients, all of whom achieved auditory perception with electrical stimulation. Intra-operative electrically evoked auditory brainstem response testing was successful in four patients and was useful in confirming correct electrode position. In six cases postoperative psychophysical and auditory perception testing demonstrated that useful auditory sensations were achieved. Five of these patients regularly used the implant. In one patient electrode placement was unsuccessful and only non-auditory sensations occurred on stimulation. In the remaining patients nonauditory sensations were minimal and avoidable by selective electrode programming. Auditory brainstem implantation should be considered in patients with NF2. The greatest benefit is seen in patients without debilitating disease who have non-aidable hearing in the contralateral ear.
  • Item
    Thumbnail Image
    BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival effects
    Gillespie, Lisa. N. ; Clark, Graeme M. ; Bartlett, P. F. ; Marzella, P. L. ( 2003)
    Neurotrophic factors are important for the development and maintenance of the auditory system. They have also been shown to act as survival factors for auditory neurons in animal deafness models. Studies have demonstrated recently that these neurotrophic factors not only maintain survival of auditory neurons, but that these surviving neurons retain functionality. It remains to be determined, however, if a single administration of a neurotrophic factor is sufficient to maintain auditory neuron survival after loss of hair cells, or if sustained delivery is required. This study investigated the longevity of the survival effects of BDNF on auditory neurons in deafened guinea pigs. Briefly, the left cochleae of deafened guinea pigs were infused with BDNF for 28 days via a miniosmotic pump, and neuronal survival was analysed at various stages after the completion of treatment. BDNF treatment prevented the degeneration of auditory neurons that normally is seen after a loss of hair cells, supporting previous studies. Our results indicate, however, that cessation of BDNF treatment leads to an accelerated decline in auditory neuron survival as compared to that observed in deafened, untreated cochleae. These findings indicate that much work remains to be done to establish a technique for the long-term survival of auditory neurons in the deaf ear.
  • Item
    Thumbnail Image
    Cochlear implants
    Clark, Graeme M. (Springer, 2003)
    Over the past two decades there has been remarkable progress in the clinical treatment of profound hearing loss for individuals unable to derive significant benefit from hearing aids. Now many individuals who were unable to communicate effectively prior to receiving a cochlear implant are able to do so, even over the telephone without any supplementary visual cues from lip reading. The earliest cochlear implant devices used only a single active channel for transmitting acoustic information to the auditory system and were not very effective in providing the sort of spectrotemporal information required for spoken communication. This situation began to change about 20 years ago upon introduction of implant devices with several active stimulation sites. The addition of these extra channels of information has revolutionized the treatment of the profoundly hearing impaired. Many individuals with such implants are capable of nearly normal spoken communication, whereas 20 years ago the prognosis for such persons would have been extremely bleak. (From Introduction)
  • Item
    Thumbnail Image
    Cochlear implants in children: safety as well and speech and language
    Clark, Graeme M. ( 2003)
    Unavailable due to copyright.