Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes
    Evans, AJ ; Thompson, BC ; Wallace, GG ; Millard, R ; O'Leary, SJ ; Clark, GM ; Shepherd, RK ; Richardson, RT (WILEY, 2009-10)
    Release of neurotrophin-3 (NT3) and brain-derived neurotrophic factor (BDNF) from hair cells in the cochlea is essential for the survival of spiral ganglion neurons (SGNs). Loss of hair cells associated with a sensorineural hearing loss therefore results in degeneration of SGNs, potentially reducing the performance of a cochlear implant. Exogenous replacement of either or both neurotrophins protects SGNs from degeneration after deafness. We previously incorporated NT3 into the conducting polymer polypyrrole (Ppy) synthesized with para-toluene sulfonate (pTS) to investigate whether Ppy/pTS/NT3-coated cochlear implant electrodes could provide both neurotrophic support and electrical stimulation for SGNs. Enhanced and controlled release of NT3 was achieved when Ppy/pTS/NT3-coated electrodes were subjected to electrical stimulation. Here we describe the release dynamics and biological properties of Ppy/pTS with incorporated BDNF. Release studies demonstrated slow passive diffusion of BDNF from Ppy/pTS/BDNF, with electrical stimulation significantly enhancing BDNF release over 7 days. A 3-day SGN explant assay found that neurite outgrowth from explants was 12.3-fold greater when polymers contained BDNF (p < 0.001), although electrical stimulation did not increase neurite outgrowth further. The versatility of Ppy to store and release neurotrophins, conduct electrical charge, and act as a substrate for nerve-electrode interactions is discussed for specialized applications such as cochlear implants.
  • Item
    No Preview Available
    Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons
    Richardson, RT ; Wise, AK ; Thompson, BC ; Flynn, BO ; Atkinson, PJ ; Fretwell, NJ ; Fallon, JB ; Wallace, GG ; Shepherd, RK ; Clark, GM ; O'Leary, SJ (ELSEVIER SCI LTD, 2009-05)
    Sensorineural hearing loss is associated with gradual degeneration of spiral ganglion neurons (SGNs), compromising hearing outcomes with cochlear implant use. Combination of neurotrophin delivery to the cochlea and electrical stimulation from a cochlear implant protects SGNs, prompting research into neurotrophin-eluting polymer electrode coatings. The electrically conducting polypyrrole/para-toluene sulfonate containing neurotrophin-3 (Ppy/pTS/NT3) was applied to 1.7 mm2 cochlear implant electrodes. Ppy/pTS/NT3-coated electrode arrays stored 2 ng NT3 and released 0.1 ng/day with electrical stimulation. Guinea pigs were implanted with Ppy/pTS or Ppy/pTS/NT3 electrode arrays two weeks after deafening via aminoglycosides. The electrodes of a subgroup of these guinea pigs were electrically stimulated for 8 h/day for 2 weeks. There was a loss of SGNs in the implanted cochleae of guinea pigs with Ppy/pTS-coated electrodes indicative of electrode insertion damage. However, guinea pigs implanted with electrically stimulated Ppy/pTS/NT3-coated electrodes had lower electrically-evoked auditory brainstem response thresholds and greater SGN densities in implanted cochleae compared to non-implanted cochleae and compared to animals implanted with Ppy/pTS-coated electrodes (p<0.05). Ppy/pTS/NT3 did not exacerbate fibrous tissue formation and did not affect electrode impedance. Drug-eluting conducting polymer coatings on cochlear implant electrodes present a clinically viable method to promote preservation of SGNs without adversely affecting the function of the cochlear implant.
  • Item
    Thumbnail Image
    The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons
    Richardson, RT ; Thompson, B ; Moulton, S ; Newbold, C ; Lum, MG ; Cameron, A ; Wallace, G ; Kapsa, R ; Clark, G ; O'Leary, S (ELSEVIER SCI LTD, 2007-01)
    This research aims to improve the nerve-electrode interface of the cochlear implant using polymer technology to encourage neuron survival, elongation and adhesion to the electrodes. Polypyrrole (Ppy) doped with p-toluene sulphonate (pTS) is an electroactive polymer into which neurotrophin-3 (NT3) can be incorporated. Ppy/pTS+/-NT3 was synthesised over gold electrodes and used as a surface for auditory neuron explant culture. Neurite outgrowth from explants grown on Ppy/pTS was equivalent to tissue culture plastic but improved with the incorporation of NT3 (Ppy/pTS/NT3). Electrical stimulation of Ppy/pTS/NT3 with a biphasic current pulse, as used in cochlear implants, significantly improved neurite outgrowth from explants. Using (125)I-NT3, it was shown that low levels of NT3 passively diffused from Ppy/pTS/NT3 during normal incubation and that electrical stimulation enhanced the release of biologically active NT3 in quantities adequate for neuron survival. Furthermore, Ppy/pTS/NT3 and its constituents were not toxic to auditory neurons and the Ppy/pTS/NT3 coating on gold electrodes did not alter impedance. If applied to the cochlear implant, Ppy/pTS/NT3 will provide a biocompatible, low-impedance substrate for storage and release of NT3 to help protect auditory neurons from degradation after sensorineural hearing loss and encourage neurite outgrowth towards the electrodes.
  • Item
    Thumbnail Image
    Pneumococcal meningitis: development of a new animal model
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'LEARY, STEPHEN ( 2006)
    Hypothesis: The rat is a suitable animal to establish a model for the study of pneumococcal meningitis postcochlear implantation. Background: There has been an increase in the number of cases of cochlear implant-related meningitis. The most common organism identified was Streptococcus pneumoniae. Whether cochlear implantation increases the risk of pneumococcal meningitis in healthy subjects without other risk factors remains to be determined. Previous animal studies do not focus on the pathogenesis and risk of pneumococcal meningitis postimplantation and are based on relatively small animal numbers, making it difficult to assess the cause-and-effect relationship. There is, therefore, a need to develop a new animal model allowing direct examination of the pathogenesis of meningitis in the presence of a cochlear implant. Methods: Eighteen nonimplanted rats were infected with 1 x 10[to the power of 6] and 1 x 10[to the power of 8] colony-forming units (CFU) of a clinical isolate of S. pneumoniae via three different inoculation routes (middle ear, inner ear, and i.p.) to examine for evidence of meningitis during 24 hours. Six implanted rats were infected with the highest amount of bacteria possible for each route of inoculation (4 x 10[to the power of 10] CFU i.p., 3 x 10[to the power of 8] CFU middle ear, and I x 106 CFU inner ear) to examine for evidence of meningitis with the presence of an implant. The histological pattern of cochlear infections for each of the three different inoculating routes were examined. Results: Pneumococcal meningitis was evident in all 6 implanted animals for each of the three different routes of inoculation. Once in the inner ear, bacteria were found to enter the central nervous system via either the cochlear aqueduct or canaliculi perforantes of the osseous spiral lamina, reaching the perineural and perivascular space then the internal acoustic meatus. The rate, extent, and pattern of infection within the cochleae depended on the route of inoculation. Finally, there was no evidence of pneumococcal meningitis observed in 18 nonimplanted rats inoculated at a lower concentration of S. pneumoniae when observed for 24 hours postinoculation. Conclusion: Meningitis in implanted rats after inoculation with a clinical isolate of S. pneumoniae is possible via all three potential routes of infection via the upper respiratory tract. The lack of meningitis observed in the 18 nonimplanted rats suggests that longer postinoculation monitoring periods are required to ensure whether or not meningitis will develop. Based on this work, we have developed a new animal model that will allow quantitative risk assessment of meningitis postcochlear implantation, and the assessment of the efficacy of potential interventional strategies in future studies.
  • Item
    Thumbnail Image
    Pneumococcal meningitis threshold model: a potential tool to assess infectious risk of new or existing inner ear surgical interventions
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'LEARY, STEPHEN ( 2006)
    Hypothesis: A minimal threshold of Streptococcus pneumoniae is required to induce meningitis in healthy animals for intraperitoneal (hematogenous), middle ear, and inner ear inoculations, and this threshold may be altered via recent inner ear surgery. Background: There has been an increase in the number of reported cases of cochlear implant-related pneumococcal meningitis since 2002. The pathogenesis of pneumococcal meningitis is complex and not completely understood. The bacteria can reach the central nervous system (CNS) from the upper respiratory tract mucosa via either hematogenous route or via the inner ear. The establishment of a threshold model for all potential routes of infection to the CNS in animals without cochlear implantation is an important first step to help us understand the pathogenesis of the disease in animals with cochlear implantation. Methods: Fifty-four otologically normal adult Hooded Wistar rats (27 receiving cochleostomy and 27 controls) were inoculated with different amounts of bacterial counts via three different routes (intraperitoneal, middle ear, and inner ear). Rats were monitored during 5 days for signs of meningitis. Blood, cerebrospinal fluid, and middle ear swabs were taken for bacterial culture, and brains and cochleae were examined for signs of infection. Results: The threshold of bacterial counts required to induce meningitis is lowest in rats receiving direct inner ear inoculation compared with both intraperitoneal and middle ear inoculation. There is no change in threshold between the group of rats with cochleostomy and the control (Fisher's exact test, p < 0.05). Conclusion: A minimal threshold of bacteria is required to induce meningitis in healthy animals and is different for three different routes of infection (intraperitoneal, middle ear, and inner ear). Cochleostomy performed 4 weeks before the inoculation did not reduce the threshold of bacteria required for meningitis in all three infectious routes. This threshold model will also serve as a valuable tool, assisting clinicians to quantitatively analyze if the presence of a cochlear implantor other CNS prostheses alter the risk of meningitis.
  • Item
    Thumbnail Image
    Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole
    Thompson, Brianna C. ; Moulton, Simon E. ; DING, JIE ; RICHARDSON, RACHAEL ; CAMERON, ADRIAN ; O'LEARY, STEPHEN ; Wallace, Gordon G. ; Clark, Graeme M. ( 2006)
    Unavailable due to copyright.
  • Item
    Thumbnail Image
    A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion neurons and provides trophic support
    Richardson, Rachael T. ; O'LEARY, STEPHEN ; Wise, Andrew ; Hardman, Jennifer ; Clark, Graeme M. ( 2005)
    Unavailable due to copyright.
  • Item
    Thumbnail Image
    Delivery of neurotrophin-3 to the cochlea using alginate beads
    Noushi, Fanoosh ; Richardson, Rachael T. ; Hardman, Jennifer ; Clark, Graeme M. ; O'LEARY, STEPHEN ( 2005)
    Objective: The aim of this study was to design a novel cochlear neurotrophin (NT) delivery system for the rescue of auditory neurons after ototoxicity-induced deafening. Background: NT-3 is a trophic growth factor that promotes the survival of the auditory nerve and may have a potential therapeutical role in slowing neuron loss in progressive deafness, especially as an adjunct to the current cochlear implant. Beads made from alginate are biodegradable, slow release substances that can he placed at the round window or inside the cochlea. This study investigates the loading properties, release kinetics, and implantation potential of alginate beads loaded with NT-3. Methods: Alginate beads were prepared using an ionic gelation technique and postloaded with NT-3. Release of NT-3 was measured using enzyme-linked immunosorbent assay over 5 days. Alginate beads were implanted into deafened guinea pigs for 28 days, after which surviva1 of auditory neurons was assessed. Results: Enzyme-linked immunosorbent assay studies demonstrated a 98%: to 99% loading of NT-3 with a slow, partial release over 5 days in Ringers solution. Furthermore, the addition of heparin to the delivery system modulated NT-3 release to a steadier pattern. Implantation of alginate-heparin beads in guinea pig cochleae produced minimal local tissue reaction NT-3 loaded beads implanted as both the round window and within the scala tympani of the basal turn provided auditory neurons significant protection from degradation and apoptosis compared with unloaded beads or untreated cochleae. Conclusions: This study demonstrates alginate beads to be a safe, biodegradable and effective delivery system for NT-3 to the cochlea.
  • Item
    Thumbnail Image
    Tracing neurotrophin-3 diffusion and uptake in the guinea pig cochlea
    Richardson, Rachael T. ; Wise, Andrew ; O'LEARY, STEPHEN ; Hardman, Jennifer ; Casley, David ; Clark, Graeme M. ( 2004)
    Unavailable due to copyright.