Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Threshold shift: effects of cochlear implantation on the risk of pneumococcal meningitis
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'Leary, Stephen J. ( 2007)
    Unavailable due to copyright.
  • Item
    Thumbnail Image
    Effects of inner ear trauma on the risk of pneumococcal meningitis
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'LEARY, STEPHEN ( 2007)
    Objective: To examine the risk of pneumococcal meningitis in healthy rats that received a severe surgical trauma to the modiolus and osseous spiral lamina or the standard insertion technique for acute cochlear implantation. Design: Interventional animal studies. Subjects: Fifty-four otologically normal adult Hooded- Wistar rats. Interventions: Fifty-four rats (18 of which received a cochleostomy alone; 18, a cochleostomy and acute cochlear implantation using standard surgical techniques; and 18, a cochleostomy followed by severe inner ear trauma) were infected 4 weeks after surgery with Streptococcus pneumoniae via 3 different routes (hematogenous, middle ear, and inner ear) to represent all potential routes of bacterial infection from the upper respiratory tract to the meninges in cochlear implant recipients with meningitis. Results: Severe trauma to the osseous spiral lamina and modiolus increased the risk of pneumococcal meningitis when the bacteria were given via the middle or inner ear (Fisher exact test, P<.05). However, the risk of meningitis did not change when the bacteria were given via the hematogenous route. Acute electrode insertion did not alter the risk of subsequent pneumococcal meningitis for any route of infection. Conclusions: Severe inner ear surgical trauma to the osseous spiral lamina and modiolus can increase the risk of pneumococcal meningitis. Therefore, every effort should be made to ensure that cochlear implant design and insertion technique cause minimal trauma to the bony structures of the inner ear to reduce the risk of pneumococcalmeningitis.
  • Item
    Thumbnail Image
    Protective effects of local administration of ciprofloxacin on the risk of pneumococccal meningitis after cochlear implantation
    Wei, Benjamin P. C. ; Robins-Browne, Roy M. ; Shepherd, Robert K. ; AZZOPARDI, KRISTY ; Clark, Graeme M. ; O'Leary, Stephen J. ( 2006)
    Objectives: To determine whether ciprofloxacin retains its antimicrobial activity after storage with Healon at ambient temperature and at 37°C over 5 weeks and then to establish whether the application of ciprofloxacin/Healon onto scala tympani electrode arrays reduces the risk of meningitis in implanted rats inoculated with S. pneumoniae. Study Design: In vitro laboratory and in vivo animal studies Methods: The antibacterial activity of three concentrations of ciprofloxacin/Healon (7.5, 75, and 750 µg/mL) was examined over 5 weeks at both ambient temperature (23°C) and body temperature (37°C). Thirty-six rats (18 implanted with ciprofloxacin [750 mg/mL]/Healon-coated electrode array and 18 without the coating) were infected with S. pneumoniae 4 weeks after implantation by way of three different routes of infection (hematogenous, middle ear, and inner ear) and observed for the development of meningitis. Results: The antibacterial activity of ciprofloxacin/Healon was maintained over 5 weeks at both 23°C and 37°C. The implanted rats with the ciprofloxacin/Healon-coated electrode array were protected from meningitis when the bacteria were given by way of the hematogenous route (Fisher’s exact test, P = .008) but not when the bacteria were inoculated directly into the middle or inner ear. However, the time to develop meningitis was significantly longer in rats implanted with a coated array, irrespective of the route of inoculation (P < .05, log rank test). Conclusion: Our animal model demonstrated that a ciprofloxacin-coated electrode array can protect healthy implanted rats from meningitis when the route of infection is hematogenous and can delay the onset of meningitis when bacteria are inoculated directly into the middle or inner ear.
  • Item
    Thumbnail Image
    Pneumococcal meningitis threshold model: a potential tool to assess infectious risk of new or existing inner ear surgical interventions
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'LEARY, STEPHEN ( 2006)
    Hypothesis: A minimal threshold of Streptococcus pneumoniae is required to induce meningitis in healthy animals for intraperitoneal (hematogenous), middle ear, and inner ear inoculations, and this threshold may be altered via recent inner ear surgery. Background: There has been an increase in the number of reported cases of cochlear implant-related pneumococcal meningitis since 2002. The pathogenesis of pneumococcal meningitis is complex and not completely understood. The bacteria can reach the central nervous system (CNS) from the upper respiratory tract mucosa via either hematogenous route or via the inner ear. The establishment of a threshold model for all potential routes of infection to the CNS in animals without cochlear implantation is an important first step to help us understand the pathogenesis of the disease in animals with cochlear implantation. Methods: Fifty-four otologically normal adult Hooded Wistar rats (27 receiving cochleostomy and 27 controls) were inoculated with different amounts of bacterial counts via three different routes (intraperitoneal, middle ear, and inner ear). Rats were monitored during 5 days for signs of meningitis. Blood, cerebrospinal fluid, and middle ear swabs were taken for bacterial culture, and brains and cochleae were examined for signs of infection. Results: The threshold of bacterial counts required to induce meningitis is lowest in rats receiving direct inner ear inoculation compared with both intraperitoneal and middle ear inoculation. There is no change in threshold between the group of rats with cochleostomy and the control (Fisher's exact test, p < 0.05). Conclusion: A minimal threshold of bacteria is required to induce meningitis in healthy animals and is different for three different routes of infection (intraperitoneal, middle ear, and inner ear). Cochleostomy performed 4 weeks before the inoculation did not reduce the threshold of bacteria required for meningitis in all three infectious routes. This threshold model will also serve as a valuable tool, assisting clinicians to quantitatively analyze if the presence of a cochlear implantor other CNS prostheses alter the risk of meningitis.