Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Cochlear implants for adults and children
    Clark, Graeme M. (Martin Dunitz, 2002)
    Cochlear implants which use multiple-electrode speech-processing strategies are now established clinical entity for children and adults, as a result, preoperative selection and (re)habilitation are key issues. It is hard to realize that it was only in the 1960s and 1970s when many scientists and clinicians said that successful cochlear implants were not possible in the foreseeable future. The questions that had to be addressed by a multi disciplinary research effort are discussed, and the solutions achieved from the University of Melbourne's perspective are presented. However, the main aim of this chapter is to focus on preoperative selection, and (re)habilitation, including the results obtained. These issues are discussed primarily with reference to data from the University of Melbourne's Cochlear Implant Clinic at the Royal Victorian Eye and Ear Hospital. As this is a book on audiological medicine only, an overview of surgical principles is presented. The surgical management of the patient is, of course, very important, so for more details the reader is referred elsewhere. Cochlear implantation has also been the subject of quite intense ethical debate, particularly over its use for children. For this reason, a discussion of ethical issues is included. Finally, the chapter concludes with a vision of research in the next Millennium.
  • Item
    Thumbnail Image
    Engineering
    Patrick, James F. ; Seligman, Peter M. ; Clark, Graeme M. (Singular Publishing, 1997)
    The last two decades have seen major advances in cochlear implants for profoundly deaf people. Implants are now used by severely to profoundly deaf adults and children in almost every phase of daily life. They have become an established treatment, and today's expectations for all aspects of the cochlear implant system are much greater than they were for the experimental devices of the early 1980s. Hardware designs have improved to meet clinical and research demands, technological developments have made the devices smaller and more reliable, and speech processing research has yielded a series of improvements in patient benefit.
  • Item
    Thumbnail Image
    The Melbourne Cochlear Implant Clinic program
    Cowan, Robert S. C. ; Clark, Graeme M. (Singular Publishing, 1997)
    The Melbourne Cochlear Implant Clinic program involves a multidisciplinary clinical team, collaborating with those engaged in more fundamental research, and with the biomedical company Cochlear Limited. This chapter reflects the contributions of many professionals to managing children with cochlear implants.
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    Comparison of current speech coding strategies
    Whitford, L. A. ; Seligman, P. M. ; Blamey, Peter J. ; McDermott, H. J. ; Patrick, J. F. ( 1993)
    This paper reports on two studies carried out at the University of Melbourne jointly with Cochlear Pty Ltd. The studies demonstrated substantial speech perception improvements over the current Multipeak strategy in background noise.
  • Item
    Thumbnail Image
    Preliminary speech perception results for children with the 22-electrode Melbourne/ cochlear hearing prosthesis
    Cowan, R. S. C. ; Dowell, R. C. ; Pyman, B. C. ; Dettman, S. J. ; Dawson, P. W. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Clark, Graeme M. ( 1993)
    The 22-electroce cochlear prosthesis developed by the University of Melbourne and Cochlear Pty. Ltd. has been shown to provide significant speech perception benefits to profoundly deafened adults. More recently, use of an improved Multipeak encoding strategy has significantly improved speech perception performance both in quiet and in noise. Benefits to speech perception in children have not as yet been fully documented, in part due to the shorter history of implant use in children and the smaller overall number of children implanted as compared with adults. The first implantation of the 22-electrode cochlear prosthesis in a child was carried out in Melbourne in January of 1985. In Melbourne, a 5-year-old child was operated on in April 1986, and a first congenitally deaf child in April 1987. The age of implantation has been progressively reduced, with the first 2-year-old child implanted in Melbourne in 1990. As at January 1992, approximately 1,200 children (under 18 years of age inclusive) have been implanted worldwide with the 22-electrode cochlear prosthesis. Of this number, approximately 50% are under the age of 6 years. The age of the child, aetiology of the hearing loss, age at onset and duration of the hearing loss, education program attended both prior to and subsequent to implantation, and parental motivation to assist in habilitation are all factors which may affect an individual child's development and progress with the device. Evaluation of performance in children is complicated by a number of issues, including the effects of delayed speech and language development, and the ability of individual children to perform auditory tests. The measure of performance chosen for any evaluation will also reflect the interests of the particular clinician. For example, effects of device use on speech production may be of interest to the speech therapist, whereas educational progress will be of primary importance to the teacher of an implanted child. However, in choosing an appropriate evaluation test to measure progress woth the cochlear prosthesis, it is vital to realize that all measures such as effects of device use on speech production, educational progress, development of language, and effects on social and communication skills depend on the child being able to accurately perceive speech information through her/his device.
  • Item
    Thumbnail Image
    Psychophysical and speech perceptual studies on cochlear implant patients
    Tong, Yit C. ; Lim, H. H. ; Clark, Graeme M. (Springer-Verlag, 1990)
    One of the most important findings in cochlear implant research has been the orderly variation in perceptual characteristics produced by intracochlear electrodes in accordance with the tonotopic organization of the cochlea. The electrical signal dimension of electrode position has therefore been used extensively for presenting speech information to cochlear implant patients. This paper describes further psychophysical and speech perceptual results on the perceptual characteristics produced by intracochlear electrodes.
  • Item
    Thumbnail Image
    The engineering of future cochlear implants
    Clark, Graeme M. ; Tong, Yit. C. (Croom Helm, 1985)
    Speech is a complex acoustic signal, and information is transmitted to the brain at a rapid rate. For example during a conversation ten phonemes are uttered per second. Furthermore, these complex speech sounds are coded into patterns of neural discharges that enable the subject to understand speech. In order, therefore, to bring speech signals directly to residual auditory nerve fibres, considerable processing of the speech signal is required before the central nervous system will recognise and comprehend it. The magnitude of the task can be further appreciated when one considers that there are an average of 31,400 nerve fibres in the human auditory nerve and a large proportion of these convey information to the brain about the speech frequencies. Research studies are showing, however, that the perception of ongoing speech with cochlear implants may be achieved 'With speech processing strategies which can be achieved by current electronic technology.
  • Item
    Thumbnail Image
    Steady-state evoked potentials to amplitude-modulated tones
    Rickards, F. W. ; Clark, Graeme M. (Butterworths, 1984)
    This study is an investigation of auditory evoked potentials (AEPs) to amplitude-modulated (AM) tones. The majority of AEP studies describe transient AEPs to pure tones and clicks. These potentials include the brainstem auditory evoked potentials (BAEPs) and the middle- and long-latency cortical potentials. By contrast, the cochlear microphic (CM) and the frequency-following response (FFR) are sustained potentials observed during a pure tone stimulus.