Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 97
  • Item
    Thumbnail Image
    Synchronization of the neural response to noisy periodic synaptic input
    Burkitt, A. N. ; Clark, Graeme M. ( 1999)
    The relationship between the timing of the synaptic inputs and the output spikes of leaky integrate and fire neurons with noisy periodic synaptic input is addressed using the recently developed integrated-input technique. The conditional output spike density in response to noisy periodic input is evaluated as a function of the initial phase of the inputs. This enables the phase transition matrix to be calculated, which relates the phase at which the output spike is generated to the initial phase of the inputs. The interspike interval histogram and the period histogram for the neural response to ongoing periodic input are then evaluated by using the leading eigenvector of this phase transition matrix. The dependence of the synchronization index of the neural response upon the number and amplitude of synaptic inputs, the membrane time constant, the average rate of inputs and their frequency of modulation is examined.
  • Item
    Thumbnail Image
    A speech processing strategy for multiple-electrode cochlear implant prostheses
    Tong, Y. C. ; Clark, Graeme M. (Monash University Press, 1983)
    Speech studies in a number of research centres have shown that useful speech information could be presented to deaf patients using single or multiple electrode cochlear implant prostheses (Parking & Anderson, 1983). In our laboratory, speech processing strategies were formulated on the basis of psychophysical results. This paper examines the psychophysical characteristics of the hearing sensations produced by electrical stimulation using scala tympani electrodes in postlingually deaf patients; a speech processing strategy is then discussed on the basis of these characteristics.
  • Item
    Thumbnail Image
    Physiological and histopathological effects of chronic intracochlear electrical stimulation
    Shepherd, R. K. ; Clark, Graeme M. ; Black, R. C. (Monash University Press, 1983)
    Direct and r.f. currents are known to result in destruction of neural tissue. However, it is now apparent that non-destructive electrical stimulation can be achieved by the use of biphasic pulsatile stimuli (Lilly, 1960; Mortimer et al., 1970; Hughes et al., 1980). Although maximum biologically safe stimulation regimes have yet to be clearly defined, the evidence of a number of investigators suggests that charge density per phase and charge injection per phase are important parameters when establishing biologically safe levels of electrical stimulation (Pudenz et al., 1975; Pudenz et al., 1977; Brown et al., 1977; Babb et al., 1977). Furthermore, considerable attention has been given to ensure that the stimulus is not producing adverse electrochemical reactions that could result in physical or toxic injury to the biological environment. Brummer et al. (1977) have defined the upper limit of electrochemically safe electrical stimulation for platinum electrodes as charge balanced biphasic pulses at a maximum charge density of 300 ?C/cm2 geom./phase.
  • Item
    Thumbnail Image
    Selection of speech processing for cochlear implant prostheses
    Millar, J. B. ; Tong, Y. C. ; Clark, Graeme M. (Monash University Press, 1983)
    In this paper we consider a framework against which to discuss strategies for the design of speech processors for cochlear implant prostheses. We hope to encourage discussion of the bases for such a framework even though it may seem a distant objective owing to the large gaps in our understanding of several component parts of cochlear implant systems. The existence of such a framework would provide a background against which to view the current diverse cochlear implant systems and to evaluate their performance.
  • Item
    Thumbnail Image
    The implanted round window membrane in the cat [Abstract]
    Franz, B. ; Clark, Graeme M. ; Ng, J. ; Bloom, D. (Monash University Press, 1983)
    In cochlear implants the round window is convenient for the electrode insertion into the scala tympani because the surgical approach is reasonably easy and the inserted electrode lies close to systematically organised nerve fibres in the spiral lamina. However, complications might occur when a poor seal, extensive tissue damage or surgical asepsis are present that lead to a reduction in the nerve fibre population which is needed for electrical stimulation. Published articles available do not describe the role of the window membrane in cochlear implants. Probably this can be referred to the finidng of abundant scar tissue in the window niche and around the electrode giving the impression of a safely implanted electrode. This study performed on seven cats over 5 months was concerned with morphological properties of the implanted window membrane at different stages after implantation. In addition, horseradishperoxydase was used as a tracersubstance to give data concerning the sealing properties of the implanted round window membrane.
  • Item
    Thumbnail Image
    Initial results for six patients with a multiple-channel cochlear prosthesis
    Dowell, R. C. ; Brown, A. M. ; Seligman, P. M. ; Clark, Graeme M. (Monash University Press, 1983)
    A total of eight patients have been assessed with the multi-channel cochlear prosthesis at the University of Melbourne. The first two patients were implanted with a prototype device in 1978 and 1979, and their results with various speech evaluation procedures have been reported and summarized in detail elsewhere (Clark & Tong, 1982). Briefly, these results indicated that some very significant benefit could be obtained for these patients when using the cochlear prosthesis with external speech processing, particularly when using the device in conjunction with lipreading. It was also shown that some significant understanding of speech was possible without lipreading (open-set) for both patients, although this was fairly limited.
  • Item
    Thumbnail Image
    The auditory brainstem response in hearing and deaf cats evoked by intracochlear electrical stimulation
    Black, R. C. ; Clark, Graeme M. ; O'Leary, S. J. ; Walters, C. (Monash University Press, 1983)
    This study was performed to investigate in detail the auditory brainstem response (ABR) for intracochlear electrical stimulation. Brainstem response audiometry is a simple, noninvasive procedure with the responses under many stimulus conditions being readily understood in terms of single auditory nerve discharge properties. The amplitude and latency behaviour of the Nl brainstem response correlates well with that recorded directly from the auditory nerve (Huang & Buchwald, 1978). In addition, the brainstem response can be divided into frequency-specific components corresponding to tonotopical locations in the cochlea, as exhibited in the method of derived responses (e.g. Parker &Thornton, 1978). It is therefore well suited to both physiological and clinical investigation of auditory function and therefore should be useful in evaluating auditory function under conditions of electrical stimulation of the cochlea.
  • Item
    Thumbnail Image
    Electrical stimulation of the human cochlea: psychophysical and speech studies
    Clark, Graeme M. (Plenum Publishing Corporation, 1981)
    This report describes psychophysical and speech studies conducted on two of our post-lingually deaf patients implanted with the nature of the hearing sensations produced by the individual electrodes, and to investigate the feasibility of the transmission of speech information to higher centres by means of cadences of stimulation using on electrode at a time. Two totally deaf patients (MC1 and MC2) participated in these studies.
  • Item
    Thumbnail Image
    Chronic monopolar high rate simulation of the auditory nerve: physiological and histopathological effects
    TYKOCINSKI, MICHAEL ; Linahan, Neil ; Shepherd, R. K. ; Clark, Graeme M. (Kugler Publications, 2001)
    There is clinical interest in the development of high rate speech processing strategies, since there are indications that these might enhance speech perception due to an improved representation of the rapid variations in amplitude of speech. Significant improvement in speech perception using high rate stimulation has been demonstrated in cochlear implant recipients. However, it is important that the long-term safety of high rate stimulation is clearly established prior to its general clinical application. This is especially important, since acute animal studies have shown that high rate stimulation can induce a reduction in the excitability of the auditory nerve. This was also associated with an increase in both threshold and latency of the electrically evoked auditory brainstem response (EABR). However, while a chronic stimulation study indicated that monopolar electrical stimulation of the auditory nerve at rates of 1000 pulses per second (pps)/channel (three channels) had no adverse effects on the spiral ganglion cell density (SGCO),5 there is limited data concerning higher rates. In the present study, we evaluated the electrophysiological and histopathological effects of chronic monopolar electrical stimulation of the auditory nerve using considerably higher stimulus rates than have been used in previous studies.
  • Item
    Thumbnail Image
    A prototype micro-machined thin-film electrode array for cochlear implants
    Parker, J. R. ; Duan, Y. Y. ; Patrick, J. ; Harrison, H. B. ; Reinhold, O. ; Clark, Graeme M. ( 2001)
    Development of a micromachined electrode array for cochlear implant application is presented. The device is constructed from a silicon substrate with sputtered platinum electrodes and connection tracks. Electrochemical impedance spectroscopy (EIS) is used to study the properties of the electrode, and to identify potential problems caused by the micromachining process and materials. A variety of insulators are studied and a two-part epoxy is identified as an adequate insulator for operation under harsh electrochemical testing conditions. The semiconducting silicon substrate is found to contribute to the total impedance of the device at high frequencies due to the thin insulating oxide between the substrate and conducting tracks. This is a potential problem for micromachined electrodes operating under high frequencies or using square stimulating pulses. The charge-delivery properties are studied using electrochemical impedance spectroscopy. It is found that platinum sputtered under particular conditions results in excellent surface conditions for optimum charge-delivery.