Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Signal processing in quiet and noise
    Dowell, R. C. ; Patrick, J. F. ; Blamey, P. J. ; Seligman, P. M. ; Money, D. K. ; Clark, Graeme M. ( 1987)
    It has been shown that many profoundly deaf patients using multichannel cochlear implants are able to understand significant amounts of conversational speech using the prosthesis without the aid of lipreading. These results are usually obtained under ideal acoustic conditions but, unfortunately, the environments in which the prostheses are most often used are rarely perfect. Some form of competing signal is always present in the urban setting, from other conversations, radio and television, appliances, traffic noise and so on. As might be expected, implant users in general find background noise to be the largest detrimental factor in their understanding of speech, both with and without the aid of lipreading. Recently, some assessment of implant patient performance with competing noise has been attempted using a four-alternative forced-choice spondee test (1) at Iowa University. Similar testing has been carried out at the University of Melbourne with a group of patients using the Nucleus multichannel cochlear prosthesis. This study formed part of an assessment of a two formant (F0/FI/F2) speech coding strategy (2). Results suggested that the new scheme provided improved speech recognition both in quiet and with competing noise. This paper reports on some more detailed investigations into the effects of background noise on speech recognition for multichannel cochlear implant users.
  • Item
    Thumbnail Image
    Speech recognition abilities in profoundly deafened adults using the Nucleus 22 Channel Cochlear Implant System
    Brimacombe, J. A. ; Webb, R. L. ; Dowell, R. C. ; Mecklenburg, D. J. ; Beiter, A. L. ; Barker, M. J. ; Clark, Graeme M. ( 1987)
    Research in the area of cochlear prostheses to restore a level of hearing sensation to the profoundly deaf has been ongoing at a number of centers throughout the world since the 1960's. 3, 4, 7, 8,. Work on a multichannel cochlear implant that utilizes a speech feature extraction coding strategy and multi-sited, sequential, bipolar stimulation to enhance pitch perception began at the University of Melbourne under the direction of Professor Graeme Clark in the 1970's. Collaboration with Nucleus Limited, a multi-national biomedical corporation from Australia, led to the development of the current version of the prosthesis. The Nucleus 22 Channel Cochlear Implant System has been described in detail elsewhere. 1, 5