Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 25
  • Item
    Thumbnail Image
    Chronic monopolar high rate simulation of the auditory nerve: physiological and histopathological effects
    TYKOCINSKI, MICHAEL ; Linahan, Neil ; Shepherd, R. K. ; Clark, Graeme M. (Kugler Publications, 2001)
    There is clinical interest in the development of high rate speech processing strategies, since there are indications that these might enhance speech perception due to an improved representation of the rapid variations in amplitude of speech. Significant improvement in speech perception using high rate stimulation has been demonstrated in cochlear implant recipients. However, it is important that the long-term safety of high rate stimulation is clearly established prior to its general clinical application. This is especially important, since acute animal studies have shown that high rate stimulation can induce a reduction in the excitability of the auditory nerve. This was also associated with an increase in both threshold and latency of the electrically evoked auditory brainstem response (EABR). However, while a chronic stimulation study indicated that monopolar electrical stimulation of the auditory nerve at rates of 1000 pulses per second (pps)/channel (three channels) had no adverse effects on the spiral ganglion cell density (SGCO),5 there is limited data concerning higher rates. In the present study, we evaluated the electrophysiological and histopathological effects of chronic monopolar electrical stimulation of the auditory nerve using considerably higher stimulus rates than have been used in previous studies.
  • Item
    Thumbnail Image
    A prototype micro-machined thin-film electrode array for cochlear implants
    Parker, J. R. ; Duan, Y. Y. ; Patrick, J. ; Harrison, H. B. ; Reinhold, O. ; Clark, Graeme M. ( 2001)
    Development of a micromachined electrode array for cochlear implant application is presented. The device is constructed from a silicon substrate with sputtered platinum electrodes and connection tracks. Electrochemical impedance spectroscopy (EIS) is used to study the properties of the electrode, and to identify potential problems caused by the micromachining process and materials. A variety of insulators are studied and a two-part epoxy is identified as an adequate insulator for operation under harsh electrochemical testing conditions. The semiconducting silicon substrate is found to contribute to the total impedance of the device at high frequencies due to the thin insulating oxide between the substrate and conducting tracks. This is a potential problem for micromachined electrodes operating under high frequencies or using square stimulating pulses. The charge-delivery properties are studied using electrochemical impedance spectroscopy. It is found that platinum sputtered under particular conditions results in excellent surface conditions for optimum charge-delivery.
  • Item
    Thumbnail Image
    Phase-contrast radiography: a new x-ray technique for cochlear implant research
    XU, JIN ; Stevenson, A. W. ; Gao, D. ; Dahm, M. ; Wilkins, S. W. ; Clark, Graeme M. (Moduzzi Editore, 2000)
    This study examines the application of a new x-ray modality, phase contrast radiography, in temporal bone (TB) imaging. Preliminary results from TB samples have shown that phase-contrast imaging offers greater contrast for edge-type features and weakly absorbing soft-tissue resulting in improved visualization of anatomic details of inner ear and microelectrode structures. This is potentially valuable in the development of new electrode arrays for cochlear implants.
  • Item
    Thumbnail Image
    Application of MEMS to cochlear implants
    Zhang, A. L. ; Huigen, J. M. ; Clark, Graeme M. ( 1998)
    A cochlear implant restores some hearing by electrically stimulating residual auditory nerve fibers in the cochlea. The cochlear implant represents a major scientific and technological breakthrough and is now providing hearing for thousands of profoundly and totally deaf people around the world. In this paper, we review the present multiple-channel cochlear implant technology and explores potential applications of micro-electro-mechanical system (MEMS) technology. A new generation of electrode arrays based on the silicon micromachining technology is presented. Approaches in the use of MEMS technology for a middle ear acoustic sensor in a totally implantable prosthesis is also discussed, with key issues for its development highlighted.
  • Item
    Thumbnail Image
    Cochlear implants in the second and third millennia
    Clark, Graeme M. ( 1998)
    Much has been achieved in the Second Millennium in the development of cochlear implants for profoundly deaf people, but further advances in the Third Millennium should result in most severely to profoundly deaf people being able to communicate effectively in a hearing community.
  • Item
    Thumbnail Image
    Direct current measurements in cochlear implants: an in vivo and in vitro study
    Huang, Christie Q. ; Carter, Paul M. ; Shepherd, Robert K. ; Seligman, Peter M. ; Tabor, Bruce ; Clark, Graeme M. ( 1998)
    Direct current (DC) was measured both in vivo and in vitro in cochlear implant electrodes with stimulation at moderate to high pulse rates in monopolar and bipolar modes. In vivo DC was approximately 2-3 times higher than that measured in vitro. In vivo DC levels were <100 nA even at very high rates, although DC levels increased as a function of stimulus rate and charge intensity. DC levels were lower: in the monopolar than in the bipolar stimulation condition. Stimulation with a monopolar capacitively coupled extracochlear electrode showed even lower DC levels in the intracochlear .electrodes. Our results indicated that the Nucleus electrode shorting system is able to maintain a low level of DC during very high rate stimulation for both monopolar and bipolar modes.
  • Item
    Thumbnail Image
    Preliminary results on spectral shape perception and discrimination of musical sounds by normal hearing subjects and cochlear implantees
    Stainsby, Thomas H. ; McDermott, Hugh J. ; McKay, Colette M. ; Clark, Graeme M. ( 1997)
    This paper presents an overview of an ongoing research project investigating the perception of musical timbre by people with normal hearing, impaired hearing, and cochlear implants. The investigation of musical timbre has been limited to the perception of steady-state frequency spectra from 10 different sources, including sampled acoustic instruments, sung vowels, and synthetic waveforms. Subjects were tested in three different tasks: I) the discrimination of spectra when presented in all possible pairs; 2) the measurement of the internally-perceived frequency spectra using a forward-masking paradigm; and 3) the identification of the spectra by name with the restricted set of sound sources from which they were sampled. Preliminary results from the normally hearing subjects show the spectra to be 99.8% distinguishable, and that significant detail is evident in the internal spectral envelopes from different sounds. There was around 50%-correct identification of stimuli by name with the original sound sources from which they were sampled. The experimental work with hearing impaired and cochlear implant subjects has commenced.
  • Item
    Thumbnail Image
    Peri-modiolar electrode arrays: a comparison of electrode position n the human temporal bone
    Shepherd, R. K. ; Treaba, C. G. ; Cohen, L. ; Pyman, B. ; Huigen, J. ; Xu, J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    This paper describes a radiologic evaluation of three types of peri-modiolar arrays, comparing their trajectory within the scala tympani with a standard Mini-22 electrode. All peri-modiolar arrays were found to lie closer to the modiolus for much of their insertion length compared with the standard array. While one design showed evidence for the potential of increased insertion trauma, two designs produced satisfactory results. Although further electrode development, temporal bone and histopathologic studies arE required, it would appear that the benefits of peri-modiolar electrode arrays will be realised clinically.
  • Item
    Thumbnail Image
    Evoked potential assessment of children with severe/profound hearing loss: a comparison of steady-state evoked potential (SSEP) and behavioural hearing threshold levels in subjects with absent click evoked auditory brainstem responses (ABR)
    Rance, G. ; Dowell, Richard, C. ; Rickards, F. W. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    Steady-state evoked potential testing offers a means of obtaining accurate, frequency specific estimates of hearing threshold in subjects with even severe to total hearing losses. As such, the technique can play an important role in the preoperative evaluation of young cochlear implant candidates.
  • Item
    Thumbnail Image
    Siting the receiver-stimulator of the CI-24M model of the Cochlear Limited multiple-channel cochlear implant and fixation of its electrode array
    PYMAN, BRIAN ; Clark, Graeme M. (Monduzzi Editore, 1997)
    The correct siting of the cochlear implant receiver-stimulator package is important. The package should not obtrude significantly above the surface of bone, and should be so that blows to the head do not in damage to the package, skull or brain. The cochlear implant electrode array must be fixed at a site close to the cochlea, so that the electrode will not slide out, or be subject to differential movement with growth changes. Fixation, with Dacron® mesh, platinum-iridium ties, or clips, has been in the region of the posterior root of the zygoma and the floor of the antrum. Our research studies demonstrate that a specially-designed collar around the array can be placed through the cochleostomy and provide the necessary locking to prevent retraction of the array. It has a ceramic surround to encourage union with neighbouring bone, and stress relief to reduce wire fracture at the point where the array leaves the cochlea.