Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    Stiffness properties for nucleus standard straight and contour electrode arrays
    Kha, H. N. ; Chen, B. K. ; Clark, Graeme M. ; Jones, R. ( 2004)
    Trauma and damage during insertion of electrode arrays into the human cochlea are strongly related to the stiffness of the array. The stiffness properties of electrode arrays, which were determined by three-point flexural bending and buckling tests, are reported in this paper. To date there has been limited publication on mechanical properties of these electrode arrays. Previous studies mainly focused on characterizing the stiffness of the tip of the Nucleus straight array with little emphasis on characterizing the stiffness of its whole length. In this study, stiffnesses of the Nucleus straight and contour electrode arrays have been determined along their length. Young’s modulus of elasticity of the Nucleus straight array has been found to increase from the tip (182 MPa) to the rear end (491 MPa), whereas the stiffness of the contour array is greatest near the tip (480 MPa) and is fairly uniform in the middle and rear sections of the electrode array (380-400 MPa). Buckling experiments have shown that the contour array has much higher critical buckling load (about four times) than the Nucleus straight array. The results from three-point flexural bending and buckling experiments provide significant data for the development of electrode arrays, from which new array designs with improved flexibility can be developed. The results of stiffness properties are also important input for use in finite element models to predict the trajectories during insertion and to help evaluate the effects of different electrode array designs on damage sustained during insertion.
  • Item
    Thumbnail Image
    Bionic ears: their development and future advances using neurotrophins and inherently conducting polymers
    Clark, Graeme M. ; Wallace, Gordon ( 2004)
    The development of the multiple-channel bionic ear for hearing and speech understanding in profoundly deaf people is the result of integrating biological and physical sciences with engineering. It is the first clinically successful restoration of sensory and brain function, and brings electronic technology into a direct functional relationship with human consciousness. It presently transmits essential place and coarse temporal information for the coding of frequency, but the fine temporal and place excitation of groups of nerve fibres is inadequate for high-fidelity sound. This is required for adequate musical appreciation and hearing in noise. Research has demonstrated that nerve growth factors preserve the peripheral processes of the auditory nerves so that an electrode array placed close to these fibres could produce this fine temporal and spatial coding. The nerve growth factors can be incorporated into inherently conducting polymers that are part of the array so the peripheral processes can be preserved at the same time as they arc electrically stimulated.
  • Item
    Thumbnail Image
    Cochlear implants: a personal scientific journey [Abstract]
    Clark, Graeme M. ( 2002)
    Electrical stimulation of the auditory system to reproduce hearing commenced through academic curiosity, and the hope of helping deaf people. It received direction from neurophysiology, and later psychophysics and speech science. In the 1960s and 1970s there were many questions requiring answers before cochlear implants could become a practical reality. Key concerns were: (1) the cochlea was too complex for electrical stimulation to reproduce the coding of sound; (2) multiple electrodes inserted into the cochlea for the place coding of frequency could damage the auditory nerves to be stimulated; (3) speech was too complex to be reproduced by electrical stimulation; and (4) children born deaf would not develop the appropriate neural connectivity for speech understanding. The first questions were addressed on the experimental animal. Speech research on patients was only possible with the advent of silicon chip technology allowing the development of an implantable receiver-stimulator package. Initial research established proof of principle that connected discourse was possible with multiple electrode stimulation of the auditory nerve in severely and profoundly deaf people. The research has been developed industrially for the benefits to be provided on a widespread basis through clinics worldwide. Further research has resulted in continuing improvements so that the average profoundly deaf person can hear as well as someone with severe hearing loss using a hearing aid. There is still much research required to achieve high fidelity sound, hearing in noise, and totally implantable devices.
  • Item
    Thumbnail Image
    Histopathology of the binaural cochlear implant subject [Abstract]
    Yukawa, K. ; O'Leary, S. J. ; Clark, Graeme M. ( 2001)
    Binaural hearing improves speech reception in noise, and is necessary for sound localisation. Normal hearing subjects use both interaural time, and intensity, differences to localise sound. This study investigates why sound localisation in bilateral cochlear implantees is insensitive to interaural time differences (Hoesel 1993). We looked for evidence of neural degeneration in the auditory brainstem involved in binaural sound localisation, since this may have degraded the neural circuitry required to accurately code interaural time delays. Method: The brainstem of a bilateral cochlear implantee was prepared for light microscopy by embedding it in paraffin, sectioning at 10 mm and staining sections with thionine or Luxol fast blue (LFB). The histological sections were digitised with NIH Image and 3-dimensional reconstructions made of the cochlear nucleus (CN) and superior olivary complex (SOC) with AnalysePC. Within the CN and the SOC, cell number and size were estimated by the physical dissector technique following thionine staining, and myelination of the nerve fibres was estimated using the optical density method following LFB staining. Results: A reduction in cell size (from thionine staining) and myelination (from LFB staining) was seen in both the CN and the SOC. Conclusions: These finding are consistent with neural degeneration within the auditory pathways. This may have lead to a degradation of the neural circuitry required to accurately detect interaural time delays.
  • Item
    Thumbnail Image
    Short-term auditory memory in children using cochlear implants and its relevance to receptive language [Abstract]
    Dawson, Pam ; BUSBY, PETER ; MCKAY, COLETTE ; Clark, Graeme M. ( 2000)
    Current work indicates that many children using cochlear implants are able to hear fine differences between speech sounds but are not progressing as wel1 as expected in receptive language ability. There is anecdotal evidence from teachers that some children using cochlear implants have poor short-term auditory memory ability, which may be impeding their language development. Temporal ordering and short-term memory storage capacity involve higher order processing. Severe auditory deprivation prior to implantation may have caused auditory processing deficits at a cortical level. This study aims to assess short-term, sequential, auditory memory ability in children using cochlear implants and to determine the relationship between this ability and receptive language ability. Short-term auditory memory ability has not been previously investigated in profoundly deaf children using hearing aids and/or cochlear implants. Twenty-four children using the 22-electrode cochlear implant were tested on five short-term sequential memory tasks, three with auditory stimuli and two with visual stimuli. There were 8 children in each of the age groups; 5-6 years, 7-8 years, and 9-11 years. Twenty-four age-matched, normally hearing children served as a control group. Al1 children were also assessed on the receptive subtests of the CELF (Clinical Evaluation of Language Fundamentals) and on the nonverbal scale of the Kaufman Assessment Battery for Children (K-ABC) which measures nonverbal intelligence. This study assessed short-term auditory memory with tasks that required minimal language ability. Prior to the memory tasks, the child had to demonstrate accurate identification of the stimuli with a similar reaction time to the normally hearing controls. As expected there is a significant effect of age on memory performance for the 24 normally hearing children, with older children performing better than the younger children. The memory performance of the children using cochlear implants is therefore described in terms of its deviation from expected performance for a given chronological age. Preliminary results suggest that it is unlikely that auditory deprivation causes a memory deficit specific to the auditory modality. Performance on visual memory tasks is very similar to performance on analogous auditory memory tasks for a group of implant users. The performance of children using cochlear implants on a variety of memory tasks does not appear to be significantly different to that of normally hearing children who are of similar age and nonverbal intel1igence. In contrast their receptive language scores are substantially inferior.
  • Item
    Thumbnail Image
    Speech perception in implanted children: influence of preoperative residual hearing on outcomes [Abstract]
    Cowan, R. S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. ; Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; HOLLOW, RODNEY ; Rehn, C. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1998)
    Since the first child was implanted with the Nucleus 22-channel prosthesis in Melbourne in 1985, several thousand children world-wide have now benefitted from this technology. More effective paediatric assessment and management procedures have now been developed, allowing cochlear implants to be offered to children under the age of 2 years. Improvements in speech processing strategy have also been implemented in the Nucleus implant system, resulting in increased mean speech perception benefits for implanted adults. Although a range of performance on formal measures of hearing, speech or language has been reported for children using implants, results from the first decade of implant experience consistently show that significant benefits are available to children receiving their implant at an early age. Reported speech perception results for implanted children show that a considerable proportion (60%) of paediatric patients in the Melbourne and Sydney clinics are able to understand some open-set speech using electrical stimulation alone. These results, and the upward trend of mean speech perception benefits shown for postlinguistically deafened adults have raised questions as to whether severely, or severely-to-profoundly deaf children currently using hearing aids would in fact benefit more from a cochlear implant. To investigate the potential influence of the degree of preoperative residual hearing on postoperative speech perception, results for all implanted children in the Melbourne and Sydney cochlear implant programs were analysed. Results showed that as a group, children with higher levels of preoperative residual hearing were consistently more likely to achieve open-set speech perception benefits. Potential factors in this finding could be higher levels of ganglion cell survival or greater patterning of the auditory pathways using conventional hearing aids prior to implantation. Conversely, children with the least preoperative residual hearing were less predictable, with some children achieving open-set perception, and others showing more limited closed-set benefits to perception. For these children, it is likely that preoperative residual hearing is of less significance than other factors in outcomes.
  • Item
    Thumbnail Image
    Introduction: International Cochlear Implant, Speech and Hearing Symposium - Melbourne 1994
    Clark, Graeme M. ; Cowan, Robert S. C. ( 1995)
    The International Cochlear Implant Speech and Hearing Symposium - Melbourne 1994 covered a wide range of presentations in a number of disciplines. The scientific program included 287 oral presentations and 40 posters, presented to a total of 456 delegates from 38 countries. This was a considerable expansion in the number and range of presentations from the first international conference held in Melbourne in 1985 (Ann Otol Rhinal Laryngal 1987;96[suppl 128]). This growth highlights the importance of the discipline and the advances being made in this area.
  • Item
    Thumbnail Image
    Preoperative residual hearing as a predictor of postoperative speech scores for adult cochlear implant users [Abstract]
    COWAN, ROBERT ; HOLLOW, RODNEY ; DOWELL, RICHARD ; PYMAN, BRIAN ; Clark, Graeme M. ( 1994)
    The development of multiple channel cochlear implants has been a significant advance in the rehabilitation of profound hearing loss. Speech perception benefits have been particularly evident for postlinguistically deafened adults, who as a group have shown not only supplementation of lipreading scores but also significant comprehension of words and sentences using an implant alone, without the aid of lipreading. In many cases, patients are able to use their implant for telephone conversation. Speech perception benefits for adult users have increased with advances in speech processing and improved means of habilitation. These improvements in open-set speech benefits for adult users have resulted in a steady increase in group mean scores and a reevaluation of selection criteria for cochlear implantation. In the initial development of cochlear implants, only those with little or no residual hearing were considered as candidates. Current selection criteria now include those with substantial residual hearing, who may score up to 40% in the best-aided condition on word and sentence speech perception tests. In order to provide realistic expectations for prospective cochlear implant patients, it is important to establish the relationship of many preimplant factors to postimplant speech perception benefits. For severely hearing impaired adults, the relationship between preoperative residual hearing, as measured by aided word and sentence speech perception test scores, and postoperative speech perception benefits is of significant interest. Analysis of data collected over a 15 year period for adult patients is presented. The rationale for conducting full speech perception assessments for all potential cochlear implant patients is stressed.
  • Item
    Thumbnail Image
    A clinical report on vocabulary skills in cochlear implant users [Abstract]
    Dawson, P. ; Blamey, P. ; Dettman, S. ; Rowland, L. ; Barker, E. ; Cowan, R. ; Clark, Graeme M. ( 1994)
    Receptive vocabulary results are reported for 32 children, adolescents and prelinguistically deafened adults implanted with the 22-electrode cochlear implant at the Melbourne Cochlear Implant Clinic. Age at implantation ranged from 2 years, 6 months to 20 years and implant use ranged from 1 year to 7 years, 8 months. There were significant gains from pre- to postoperative assessments on the Peabody Picture Vocabulary Test (PPVT) for the majority of subjects. Rates of improvement found are compatible with previous reports on smaller numbers of implant users, but cannot be attributable unambiguously to use of the implant. The group postoperative performance was significantly higher than mean preoperative performance (n =25). The relationship of variables such as duration of implant use, duration of profound deafness and speech perception ability to improvement on the PPVT is discussed. Expressive vocabulary results on the Renfrew Word Finding Vocabulary Scale are reported for 11 of the subjects. Less substantial gains were made on this measure.
  • Item
    Thumbnail Image
    Combined cochlear implant and speech processing hearing aid for implant users with a severe to profound hearing loss in the contralateral ear [Abstract]
    BLAMEY, PETER ; Parisi, Elvira ; Dooley, Gary ( 1994)
    The bimodal device was developed for cochlear implant users who simultaneously wear a hearing aid in the opposite ear having residual hearing of a severe to profound degree. The aim was to create a single device to provide both input signals in a more compatible manner and thus maximise use of the individual's total hearing capabilities. The acoustic component of the bimodal device is very flexible and can implement various speech processing strategies with speed, ease and precision. The Frequency Response Tailoring strategy utilises three filters to fit a frequency gain curve to within 1-2 dB of that desired. Modifications at discrete frequencies, ranges or slopes can be readily made. The Peak Sharpening or Spectral Enhancement strategy amplifies the formant peaks in speech for potential improvement of formant resolution and speech perception in the presence of background noise. The Resynthesis strategy presents specifically selected components of speech in selected combinations and includes the ability to transpose higher frequency information to lower frequency ranges for individuals with no aidable high frequency hearing levels. Different fits can be quickly and easily interchanged for comparison and evaluation and subsequent modifications indicated can be readily effected. Any combination of acoustic and implant speech processing strategy can be presented to optimise speech perception for the individual user.