Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    A preliminary report on a multiple-channel cochlear implant operation
    Tong, Y. C. ; Black, R. C. ; Clark, Graeme M. ; Forster, I. C. ; Millar, J. B. ; O'Loughlin, B. J. ; Patrick, J. F. (Cambridge University Press, 1979)
    Intra-cochlear single-channel electrical stimulation has recently been attempted by Michelson (1971) and by House and Urban (1973). Douek et at. (1977) have described experiments with a single-channel promontory electrode system. It is generally accepted that a single-channel system is useful in conveying crude auditory information such as the presence of sounds and some prosodic features of speech (Bilger et al., 1977; Douek et al., 1977). (From Introduction)
  • Item
    Thumbnail Image
    The surgery for multiple-electrode cochlear implantations
    Clark, Graeme M. ; Pyman, Brian C. ; Bailey, Quentin R. (Cambridge University Press, 1979)
    The multiple-electrode hearing prosthesis designed in the Departments of Otolaryngology and Electrical Engineering (UMDOLEE) at the University of Melbourne (Clark et al., 1977) has been miniaturized with hybrid circuitry so that, if design changes are necessary as a result of initial patient testing, they can be made at minimal cost. This results, however, in increased package dimensions which makes its placement and the design of the surgery more critical. This problem is increased by the fact that we have considered it important to be able to remove the package and replace it with another without disturbing the implanted electrode array, should the first receiver-stimulator fail or an improved design become available. This has meant the design of a special connector (Patrick, 1977; Clark et al., 1978) which adds to the dimensions of the implanted unit. In addition the placement of the coils for transmitting power and information has to be considered. Not only is it desirable to site the coils at a convenient location behind the ear to facilitate the placement and wearing of the external transmitter, but there should also be no relative movement between the coils and the electronic package. These design considerations have led to the sitting of the coils on top of the hermetically-sealed box, and further increased the height of the package. The dimensions of the package shown in Fig. 1 are length 42 mm, width 32 mm, height of connector 8.5 mm, height of receiver-stimulato unit 13 mm. The surgical considerations discussed are the result of a number of temporal bone and cadaver dissections, and the surgical implantation at The Royal Victorian Eye and Ear Hospital of the UMDOLEE unit in a specially-selected patient.
  • Item
    Thumbnail Image
    A cochlear implant round window electrode array
    Clark, Graeme M. ; Patrick, J. F. ; Bailey, Q. (Cambridge University Press, 1979)
    One important aspect of cochlear implantation is the placement of a multiple-electrode array close to residual auditory nerve fibres so that discrete groups of fibres can be stimulated electrically according to the place basis of frequency coding. Furthermore, in patients who are postlingually deaf these electrodes should lie in relation to the nerve fibres which are responsible for transmitting the frequencies which are important in speech comprehension, viz. 300-3,000 Hz. The method of electrode insertion should also ensure that there is no significant damage to auditory nerve fibres.
  • Item
    Thumbnail Image
    A multiple-electrode cochlear implant
    Clark, Graeme M. ; Tong, Y. C. ; Bailey, Q. R. ; Black, R. C. ; Martin, L. F. ; Millar, J. B. ; O'Loughlin B. J. ; Patrick, J. F. ; Pyman, B. C. ( 1978)
    Interest in artificially stimulating the auditory nerve electrically for sensori-neural deafness was first sparked off by Volta in the 18th century. Count Volta, who was the first to develop the electric battery, connected up a number of his batteries to two metal rods which he inserted into his ears. Having placed the rods in his ears he pressed the switch and received "une secousse dans la tete" and perceived a noise like "the boiling of thick soup".
  • Item
    Thumbnail Image
    Design criteria of a multiple-electrode cochlear implant hearing prosthesis
    Clark, Graeme M. ; Black, R. C. ; Forster, I. C. ; Patrick, J. F. ; Tong, Y. C. ( 1978)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Cochlear implant: perspectives
    Clark, Graeme M. ( 1979)
    Volta, who discovered the electrolytic cell, was the first person to stimulate the auditory system electrically. He connected a battery to two metal rods which were inserted into his ears, and he received "une secousse dans 1a t�te". In spite of his experience, interest in stimulating the auditory system electrically as a cure for profound hearing loss has persisted, and a number of attempts have been made as electronic developments have occurred. Following the introduction of the thermionic valve more precise studies of the effects of rate and intensity were possible. Then direct stimulation of the auditory nerve at surgery, to determine parameters of electrical stimulation, were carried out. These were followed by a few long term patient implantations in which the wires were connected directly to the outside through the skin. As this carries a high risk of infection, long term single electrode studies were also performed in which the stimuli were transmitted by inductive coupling to a coil buried beneath the skin. During this period developments in electronics and computers also led to acute and behavioural studies on animals to learn more about the physiology of hearing and the effects of electrical stimulation. All the results indicate that a multiple-electrode system offers the best chance of providing speech for a patient. A multiple-electrode system requires the implantation of a much more complicated electronic device which can now be miniaturized to an appropriate size.