Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 176
  • Item
    Thumbnail Image
    Hearing restoration with the multichannel auditory brainstem implant
    Briggs, R. J. S. ; Kaye, A. H. ; Dowell, R. C. ; Hollow, R. D. ; Clark, Graeme M. ( 1997)
    Restoration of useful hearing is now possible in patients with bilateral acoustic neuromas by direct electrical stimulation of the cochlear nucleus. Our first experience with the Multichannel Auditory Brainstem Implant is reported. A forty four year old female with bilateral acoustic neuromas and a strong family history of Neurofibromatosis Type II presented with profound bilateral hearing impairment. Translabyrinthine removal of the right tumour was performed with placement of the Nucleus eight electrode Auditory Brainstem Implant. Intraoperative electrically evoked auditory brainstem response monitoring successfully confirmed placement over the cochlear nucleus. Postoperatively, auditory responses were obtained on stimulation of all electrodes with minimal non-auditory sensations. The patient now receives useful auditory sensations using the "SPEAK" speech processing strategy. Auditory brainstem Implantation should be considered for patients with Neurofibromatosis Type II in whom hearing preservation tumour removal is not possible.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study
    XU, JIN ; Shepherd, Robert K. ; Millard, Rodney E. ; Clark, Graeme M. ( 1997)
    A major factor associated with recent improvements in the clinical performance of cochlear implant patients has been the development of speech-processing strategies based on high stimulation rates. While these processing strategies show clear clinical advantage, we know little of their long-term safety implications. The present study was designed to evaluate the physiological and histopathological effects of long-term intracochlear electrical stimulation using these high rates. Thirteen normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods of up to 2100 h using either two pairs of bipolar or three monopolar stimulating electrodes. Stimuli consisted of short duration (25-50 µs/phase) charge-balanced biphasic current pulses presented at 1000 pulses per second (pps) per channel for monopolar stimulation, and 2000 pps/channel for bipolar stimulation. The electrodes were shorted between current pulses to minimize any residual direct current, and the pulse trains were presented using a 50% duty cycle (500 ms on; 500 ms oft) in order to simulate speech. Both acoustic (ABR) and electrical (EABR) auditory brainstem responses were recorded periodically during the chronic stimulation program, All cochleas showed an increase in the click-evoked ABR threshold following implant surgery; however, recovery to near-normal levels occurred in approximately half of the stimulated cochleas 1 month post-operatively. The use of frequency-specific stimuli indicated that the most extensive hearing loss generally occurred in the high-frequency basal region of the cochlea (12 and 24 kHz) adjacent to the stimulating electrode. However, thresholds at lower frequencies (2, 4 and 8 kHz), appeared at near-normal levels despite long-term electrode implantation and electrical stimulation. Our longitudinal EABR results showed a statistically significant increase in threshold in nearly 40% of the chronically stimulated electrodes evaluated; however, the gradient of the EABR input/output (I/O) function (evoked potential response amplitude versus stimulus current) generally remained quite stable throughout the chronic stimulation period. Histopathological examination of the cochleas showed no statistically significant difference in ganglion cell densities between cochleas using monopolar and bipolar electrode configurations (P = 0.67), and no evidence of cochlear damage caused by high-rate electrical stimulation when compared with control cochleas. Indeed, there was no statistically significant relationship between spiral ganglion cell density and electrical stimulation (P = 0.459), or between the extent of loss of inner (IHC, P = 0.86) or outer (OHC, P=0.30) hair cells and electrical stimulation. Spiral ganglion cell loss was, however, influenced by the degree of inflammation (P=0.016) and electrode insertion trauma. These histopathological findings were consistent with the physiological data. Finally, electrode impedance, measured at completion of the chronic stimulation program, showed close correlation with the degree of tissue response adjacent to the electrode array. These results indicated that chronic intracochlear electrical stimulation, using carefully controlled charge-balanced biphasic current pulses at stimulus rates of up to 2000 pps/channel, does not appear to adversely affect residual auditory nerve elements or the cochlea in general. This study provides an important basis for the safe application of improved speech-processing strategies based on high-rate electrical stimulation.
  • Item
    Thumbnail Image
    Reduction in excitability of the auditory nerve following electrical simulation at high stimulus rates. II. Comparison of fixed amplitude with amplitude modulated stimuli
    TYKOCINSKI, MICHAEL ; Shepherd, Robert K. ; Clark, Graeme M. ( 1997)
    We have previously shown that acute electrical stimulation of the auditory nerve using charge-balanced biphasic current pulses presented continuously can lead to a prolonged decrement in auditory nerve excitability (Tykocinski et al., Hear. Res. 88 (1995), 124-142). This work also demonstrated a reduction in electrically evoked auditory brainstem response (EABR) amplitude decrement when using an otherwise equivalent pulse train with a 50% duty cycle. In the present study we have extended this work in order to compare the effects of electrical stimulation using both fixed amplitude electrical pulse trains and amplitude modulated (AM) pulse trains that more accurately model the dynamic stimulus paradigms used in cochlear implants. EABRs were recorded from guinea pigs following acute stimulation using AM trains of charge-balanced biphasic current pulses. The extent of stimulus-induced reductions in the EABR were compared with our previous results using either fixed amplitude continuous, or 50% duty cycle pulse trains operating at 0.34 µC/phase (2 mA, 170 µs/phase) at 400 or 1000 pulses/s (Tykocinski et al., Hear. Res. 88 (1995) 124-142). The AM pulse train, operating at the same rates, was based on a I-s sequence of the most extensively activated electrode of a Nucleus Mini-22 cochlear implant using the SPEAK speech processing strategy exposed to 4-talker babble, and delivered the same total charge as the fixed amplitude 50% duty cycle pulse train. Two hours of continuous stimulation induced a significant, rate-dependent reduction in auditory nerve excitability, and showed only a slight post-stimulus recovery for monitoring periods of up to 6 hours. Following 2 or 4 h of stimulation using an otherwise equivalent pulse train with a 50% duty cycle or the AM pulse train, significantly less reduction in the EABR was observed, and recovery to pre-stimulus levels was generally rapid and complete. These differences in the extent of the recovery between the continuous waveform and both the 50% duty cycle and AM waveforms were statistically significant for both 400 and 1000 pulses/s stimuli. Consistent with our previous results, the stimulus changes observed using AM pulse trains were rate dependent, with higher rate stimuli evoking more extensive stimulus-induced changes. The present findings show that while stimulus-induced reductions in neural excitability are dependent on the extent of stimulus-induced neuronal activity, the use of an AM stimulus paradigm further reduces post-stimulus neural fatigue.
  • Item
    Thumbnail Image
    The effect of language knowledge on speech perception: what are we really assessing?
    Sarant, Julia Z. ; Blamey, Peter J. ; Cowan, Robert S. ; Clark, Graeme M. ( 1997)
    Objective: The authors examined whether open-set speech perception scores are limited by knowledge of vocabulary and syntax and further considered whether remediation of vocabulary and syntax will increase open-set speech perception scores. Study Design: This was a repeated-measures study design in the setting of a primary (elementary) school for the hearing impaired. Patients: The study population was composed of three hearing-impaired children using Nucleus 22-channel cochlear implant. Intervention: Intervention used was language remediation sessions. Main Outcome Measures: The main outcome measures were assessment of auditory-alone speech perception benefit using open-set words and sentences and assessment of syntactic knowledge using the Test of Syntactic Ability. Outcome measures were applied before and after remediation. Results: Child 1 and child 2 showed a significant postremediation improvement in their overall scores on the Test of Syntactic Ability and in their ability to perceive words learned during remediation. Child I and child 2 also showed a significant improvement in their scores on a modified Bamford-Kowal-Bench open-set sentence test, which specifically targeted grammatical constructs trained in remediation sessions. Conclusions: Remediation of language knowledge deficits significantly improved open-set speech perception for two children, suggesting a need to include language remediation in cochlear implant habilitation programs.
  • Item
    Thumbnail Image
    Estimating mechanical responses to pulsatile electrical stimulation of the cochlea
    McAnally, Ken I. ; Brown, Mel ; Clark, Graeme M. ( 1997)
    This study estimated the mechanical response of the cochlea to pulsatile electrical stimulation of the scala tympani of the cat. The auditory nerve compound action potential evoked by an acoustic probe was forward-masked by a train of charge-balanced biphasic current pulses. Masking as a function of probe frequency reflected the excitation pattern of the response to the masker and resembled the spectrum of the electrical stimulus. Both pulse rate and pulse width influenced the degree of masking. The vibration of a region of the basilar membrane was estimated by recording the local cochlear microphonic evoked by biphasic pulses. The amplitude of the cochlear microphonic was proportional to the amplitude of the spectral component of the electrical stimulus to which the local cochlear microphonic was tuned. These results are consistent with the generation of a mechanical response to the electrical stimulus.
  • Item
    Thumbnail Image
    Comparison of current waveforms for the electrical stimulation of residual low frequency hearing
    McAnally, Ken I. ; Brown, Mel ; Clark, Graeme M. ( 1997)
    Many cochlear prostheses employ charge-balanced biphasic current pulses. These pulses have little energy at low frequencies resulting in limited stimulation of low frequency hearing by mechanical responses to the electrical stimulus. However, if electro-mechanical transduction within the cochlea is nonlinear, electrical stimulation with asymmetric, charge-balanced current pulses may result in a mechanical response with significantly more low frequency energy. We estimated the mechanical response at low frequencies to pulsatile electrical stimulation of the cochlea. The auditory nerve compound action potential evoked by low frequency tones was forward-masked by a train of symmetric or asymmetric current pulses. Masking by asymmetric current pulses was not significantly different from masking by symmetric pulses matched for pulse duration and charge. In conclusion, there appears to be no advantage to using asymmetric current pulses for the mechanical stimulation of residual low frequency hearing by electrical stimulation of the cochlea.
  • Item
    Thumbnail Image
    Acoustic and electric forward-masking of the auditory nerve compound action potential: evidence for linearity of electro-mechanical transduction
    McAnally, Ken I. ; Brown, Mel ; Clark, Graeme M. ( 1997)
    We investigated electro-mechanical transduction within the cochlea by comparing masking of the auditory nerve compound action potential (CAP) by acoustical and electrical maskers. Forward-masking of the CAP reflects the response to the masker of the cochlear location tuned to the probe. Electrical stimulation was delivered through bipolar stimulating electrodes within the basal turn of the scala tympani. The growth of masking of high-frequency probes which excite cochlear locations close to the stimulating electrodes was similar for both acoustic and electrical maskers, suggesting a linear transduction of electrical energy to mechanical energy. Exposure to intense acoustic stimulation caused an equal loss of sensitivity to acoustic and electrical maskers. Masking of lower-frequency probes by electrical maskers increased rapidly with masker current, suggesting the direct electrical stimulation of neural elements. This masking was reduced by the administration of strychnine suggesting a contribution by the efferents towards masking of these low-frequency probes.
  • Item
    Thumbnail Image
    The effect of loudness imbalance between electrodes in cochlear implant users
    Dawson, P. W. ; Skok, M. ; Clark, Graeme M. ( 1997)
    Objective: The aim was to determine the effect of loudness imbalance between electrodes in patients using the 22-electrode cochlear implant (Cochlear Pty Ltd). It was hypothesized that speech perception scores would be greater when the loudness of electrodes was balanced at the comfort (C) levels than when the C levels were unbalanced. Design: Ten adult patients received a monosyllabic word test (CNC words) in quiet and a sentence test (CUNY sentences) in noise under two conditions: with C levels balanced for equal loudness and with unbalanced C levels. Results: When the C levels across electrodes were pseudo-randomly unbalanced by 0 to ±20% of the electrodes' dynamic ranges (20% unbalancing), 6 of the 10 subjects showed a significant drop in sentence perception scores. Of these patients, none had a significant decrease in perception when the degree of unbalancing was halved. Of the four patients who showed no change with 20% unbalancing, three revealed a significant decline in sentence perception when the degree of unbalancing was doubled. There also were significant group effects for phonemes on the word test as well as for sentences in noise for the 20% unbalancing. Conclusions: The implications for clinical practice are that it is important to balance the C levels and that clinicians should be encouraged to refine methods for setting C levels in very young children, who may be using unbalanced MAPs. Nevertheless, although most patients revealed a statistically significant drop in sentence perception with 20% imbalance of the C levels, the changes in percentage scores often were only small.
  • Item
    Thumbnail Image
    Electrical stimulation of the auditory nerve with a cochlear implant and the temporal coding of sound frequencies: a brief review
    Clark, Graeme M. ( 1997)
    There is considerable evidence that the brain translates (encodes) the frequency of a sound into both place of excitation (place encoding), and the pattern of intervals between action potentials (temporal encoding). Furthermore, temporal encoding is now thought to be due to a temporal as well as spatial pattern of action potentials in a small group of neurons. This pattern needs to be reproduced with a cochlear implant for improved speech processing. Our recent research has also demonstrated that the timing of excitatory postsynaptic potentials seen with intracellular recordings from brain cells, rather than extracellularly recorded action potentials, correlates better with the frequency of sound. These excitatory postsynaptic potentials are likely to be the link between the patterns of action potentials arriving at nerve cells and the biomolecular activity in the cell. This response also needs to be replicated with improved speech processing strategies.
  • Item
    Thumbnail Image
    Speech results with a bilateral multi-channel cochlear implant subject for spatially separated signal and noise
    van Hoesel, Richard J. M. ; Clark, Graeme M. ( 1999)
    Speech tests in noise were administered to a bilaterally implanted cochlear implant subject. Performance for simultaneous use of two identical implants, with the same speech processing strategy on two independent standard clinical processors, was compared with that of the better performing monaural side alone. Speech was presented at an angle of 45 degrees toward one ear, with noise at 45 degrees toward the contralateral side. Tests were also administered for speech and noise reversed in location. When the speech signal was on the same side as the subject's better performing ear, monaural and binaural tests resulted in similar scores. When the speech was on the opposite side, however, the binaural condition showed significantly better speech scores. The results indicate that binaural implants can provide improved performance in noise when speech and noise arc spatially separated.