Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    Speech perception in implanted children: influence of preoperative residual hearing on outcomes [Abstract]
    Cowan, R. S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. ; Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; HOLLOW, RODNEY ; Rehn, C. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1998)
    Since the first child was implanted with the Nucleus 22-channel prosthesis in Melbourne in 1985, several thousand children world-wide have now benefitted from this technology. More effective paediatric assessment and management procedures have now been developed, allowing cochlear implants to be offered to children under the age of 2 years. Improvements in speech processing strategy have also been implemented in the Nucleus implant system, resulting in increased mean speech perception benefits for implanted adults. Although a range of performance on formal measures of hearing, speech or language has been reported for children using implants, results from the first decade of implant experience consistently show that significant benefits are available to children receiving their implant at an early age. Reported speech perception results for implanted children show that a considerable proportion (60%) of paediatric patients in the Melbourne and Sydney clinics are able to understand some open-set speech using electrical stimulation alone. These results, and the upward trend of mean speech perception benefits shown for postlinguistically deafened adults have raised questions as to whether severely, or severely-to-profoundly deaf children currently using hearing aids would in fact benefit more from a cochlear implant. To investigate the potential influence of the degree of preoperative residual hearing on postoperative speech perception, results for all implanted children in the Melbourne and Sydney cochlear implant programs were analysed. Results showed that as a group, children with higher levels of preoperative residual hearing were consistently more likely to achieve open-set speech perception benefits. Potential factors in this finding could be higher levels of ganglion cell survival or greater patterning of the auditory pathways using conventional hearing aids prior to implantation. Conversely, children with the least preoperative residual hearing were less predictable, with some children achieving open-set perception, and others showing more limited closed-set benefits to perception. For these children, it is likely that preoperative residual hearing is of less significance than other factors in outcomes.
  • Item
    Thumbnail Image
    The progress of children using the multichannel cochlear implant in Melbourne
    Cowan, R. S. C. ; Dowell, R. C. ; Hollow, R. ; Dettman, S. J. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Galvin, K. L. ; Webb, R. C. ; Pyman, B. C. ; Cousins, V. C. ; Clark, Graeme M. ( 1995)
    Multi-channel cochlear implantation in children began in Australia in 1985 and there are now close to 4000 profoundly deaf children and adolescents using the Australian implant system around the world. The aim of the implant procedure is to provide adequate hearing for speech and language development through auditory input. This contrasts with the situation for adults with acquired deafness where the cochlear implant aims to restore hearing for someone with well-developed auditory processing and language skills. As with adults, results vary over a wide range for children using the Multi-channel implant. Many factors have been suggested that may contribute to differences in speech perception for implanted children. In an attempt to better understand these factors, the speech perception results for children implanted in Melbourne were reviewed and subjected to statistical analysis. This has indicated that the amount of experience with the implant and the length of sensory deprivation are strongly correlated with perceptual results. This means that younger children are likely to perform better with an implant and that a number of years of experience are required for children to reach their full potential. The results have also indicated that educational placement and management play a crucial role in children reaching their potential. Overall, 60% of the children and adolescents in the study have reached a level of open-set speech understanding using the cochlear implant without lipreading.
  • Item
    Thumbnail Image
    Phonetic and phonological changes in the connected speech of children using a cochlear implant
    Grogan, M. L. ; Barker, E. J. ; Dettman, S. J. ; Blamey, P. J. ( 1995)
    In excess of 5,000 children, with profound hearing impairment, have received a cochlear implant hearing device. Researchers have recently begun to study the speech production skills of these children.1-6 This topic is of interest because the speech of young prelingually or postlingually deaf children is in a constant state of development. The effectiveness of the implant, therefore, must be measured in its ability to provide enough auditory information for the child to develop intelligible speech. This is in addition to the maintenance of intelligible speech in the case of older postlingually deaf children or adults. The aim of the present study was to investigate some characteristics of the connected speech of a selected group of children from the University of Melbourne Cochlear Implant Programme. More specifically, the study aimed to determine how these characteristics changed over time. Studies of conversational speech samples are useful in that they do not depend on imitation yet they do reflect the child's everyday communication skills and are sensitive to co-articulatory effects. Analyses performed on the preoperative and postoperative data aimed to detect both the phonetic and phonologic changes in the segmental features of speech. The following questions were addressed: 1) What was the pattern of change in the phonetic inventories from before to after implantation? 2) Was there a difference in the correct production of consonants depending on their position in the word? 3) Did the group performance for correct production of phonemes change significantly from before to after implantation? 4) Did performance change over time for individuals? 5) What were the most common phonologic processes and was there a significant reduction in any of these processes from before to after implantation?
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Speech perception in children using the advanced Speak speech-processing strategy
    Cowan, R. S. C. ; Brown, C. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Barker, E. J. ; Shaw, S. ; King, A. ; Skok, M. ; Seligman, P. M. ; Dowell, R. C. ; Everingham, C. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1995)
    The Speak speech-processing strategy, developed by the University of Melbourne and commercialized by Cochlear Pty Limited for use in the new Spectra 22 speech processor, has been shown to provide improved speech perception for adults in both quiet and noisy situations. The present study evaluated the ability of children experienced in the use of the Multipeak (Mpeak) speech-processing strategy (implemented in the Nucleus Minisystem-22 cochlear implant) to adapt to and benefit from the advanced Speak speech-processing strategy (implemented in the Nucleus Spectra 22 speech processor). Twelve children were assessed using Mpeak and Speak over a period of 8 months. All of the children had over 1 year's previous experience with Mpeak, and all were able to score significantly on open-set word and sentence tests using the cochlear implant alone. Children were assessed with both live-voice and recorded speech materials, including Consonant-Nucleus-Consonant monosyllabic words and Speech Intelligibility Test sentences. Assessments were made in both quiet and in noise. Assessments were made at 3-week intervals to investigate the ability of the children to adapt to the new speech-processing strategy. For most of the children, a significant advantage was evident when using the Speak strategy as compared with Mpeak. For 4 of the children, there was no decrement in speech perception scores immediately following fitting with Speak. Eight of the children showed a small (10% to 20%) decrement in speech perception scores for between 3 and 6 weeks following the changeover to Speak. After 24 weeks' experience with Speak, 11 of the children had shown a steady increase in speech perception scores, with final Speak scores higher than for Mpeak. Only 1 child showed a significant decrement in speech perception with Speak, which did not recover to original Mpeak levels.
  • Item
    Thumbnail Image
    A clinical report on vocabulary skills in cochlear implant users [Abstract]
    Dawson, P. ; Blamey, P. ; Dettman, S. ; Rowland, L. ; Barker, E. ; Cowan, R. ; Clark, Graeme M. ( 1994)
    Receptive vocabulary results are reported for 32 children, adolescents and prelinguistically deafened adults implanted with the 22-electrode cochlear implant at the Melbourne Cochlear Implant Clinic. Age at implantation ranged from 2 years, 6 months to 20 years and implant use ranged from 1 year to 7 years, 8 months. There were significant gains from pre- to postoperative assessments on the Peabody Picture Vocabulary Test (PPVT) for the majority of subjects. Rates of improvement found are compatible with previous reports on smaller numbers of implant users, but cannot be attributable unambiguously to use of the implant. The group postoperative performance was significantly higher than mean preoperative performance (n =25). The relationship of variables such as duration of implant use, duration of profound deafness and speech perception ability to improvement on the PPVT is discussed. Expressive vocabulary results on the Renfrew Word Finding Vocabulary Scale are reported for 11 of the subjects. Less substantial gains were made on this measure.
  • Item
    Thumbnail Image
    A clinical report on speech production of cochlear implant users [Abstract]
    Dawson, P. ; Blamey, P. ; Dettman, S. ; Rowland, L. ; Barker, E. ; Tobey, E. ; Busby, P. ; Cowan, R. ; Clark, Graeme M. ( 1994)
    Speech production results are reported for a group of 15 children, adolescents and prelinguistically deafened adults implanted with the 22-electrode cochlear implant. Age at implantation ranged from 5 years to 20 years and implant experience ranged from 1 year to 4 years, 7 months. On a speech intelligibility test using sentences seven implant users improved significantly over time. Mean group performance (n = 11) improved from 18% preoperatively to 43% postoperatively. Similarly on a test of articulation, eight implant users improved significantly over time and the group mean postoperative performance (n = 11) exceeded the preoperative performance (55% compared to 38%). This group effect was significant for consonants and blends but was nonsignificant for vowels. Improvements occurred for front, middle and back consonants, for stops, nasals, fricatives and glides and for voiceless and voiced consonants. Three implant users showed no significant gain on either test. The results suggest complex relationships between speech production performance and sensory information provided by a multichannel implant.
  • Item
    Thumbnail Image
    Preliminary speech perception results for children with the 22-electrode Melbourne/ cochlear hearing prosthesis
    Cowan, R. S. C. ; Dowell, R. C. ; Pyman, B. C. ; Dettman, S. J. ; Dawson, P. W. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Clark, Graeme M. ( 1993)
    The 22-electroce cochlear prosthesis developed by the University of Melbourne and Cochlear Pty. Ltd. has been shown to provide significant speech perception benefits to profoundly deafened adults. More recently, use of an improved Multipeak encoding strategy has significantly improved speech perception performance both in quiet and in noise. Benefits to speech perception in children have not as yet been fully documented, in part due to the shorter history of implant use in children and the smaller overall number of children implanted as compared with adults. The first implantation of the 22-electrode cochlear prosthesis in a child was carried out in Melbourne in January of 1985. In Melbourne, a 5-year-old child was operated on in April 1986, and a first congenitally deaf child in April 1987. The age of implantation has been progressively reduced, with the first 2-year-old child implanted in Melbourne in 1990. As at January 1992, approximately 1,200 children (under 18 years of age inclusive) have been implanted worldwide with the 22-electrode cochlear prosthesis. Of this number, approximately 50% are under the age of 6 years. The age of the child, aetiology of the hearing loss, age at onset and duration of the hearing loss, education program attended both prior to and subsequent to implantation, and parental motivation to assist in habilitation are all factors which may affect an individual child's development and progress with the device. Evaluation of performance in children is complicated by a number of issues, including the effects of delayed speech and language development, and the ability of individual children to perform auditory tests. The measure of performance chosen for any evaluation will also reflect the interests of the particular clinician. For example, effects of device use on speech production may be of interest to the speech therapist, whereas educational progress will be of primary importance to the teacher of an implanted child. However, in choosing an appropriate evaluation test to measure progress woth the cochlear prosthesis, it is vital to realize that all measures such as effects of device use on speech production, educational progress, development of language, and effects on social and communication skills depend on the child being able to accurately perceive speech information through her/his device.
  • Item
    Thumbnail Image
    Speech perception in implanted children: effects of speech processing strategy and residual hearing
    Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; Hollow, R. ; Rehn, C. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. (Mendoza Editor, 1997)
    The ability of implanted children to adapt to different speech processing strategies has been demonstrated for the Nucleus implant system. Children previously experienced with the Multipeak speech processing strategy. were able to gain significant improvements in consonant, word and sentence perception using the Speak speech processing strategy. suggesting some degree of neural plasticity in neural-auditory coding. Of 192 implanted children with different degrees of preoperative residual hearing, 65% were found to obtain significant scores on open-set speech materials using electrical stimulation alone. Those children with more residual hearing had a greater probability of achieving open-set understanding and at a minimum level, perceived high frequency consonant information which would not have been available through conventional hearing aids.
  • Item
    Thumbnail Image
    Speech perception in implanted children: effects of preoperative residual hearing and speech processing strategy [Abstract]
    Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; HOLLOW, RODNEY ; Rehn, C. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. ( 1997)
    Since the first child was implanted with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, the number of implanted children world-wide has rapidly expanded. Over this period, more effective paediatric assessment and management procedures have developed, allowing cochlear implants to be offered to children under the age of 2 years. In addition, a succession of improved speech processing strategies have been implemented in the Nucleus implant system, resulting in increased mean speech perception benefits for implanted adults. Research in the Melbourne and Sydney Cochlear Implant Clinics has also demonstrated that young children can adapt to and benefit from improved speech processing strategies such as the Speak strategy. Reported speech perception results for implanted children show that a considerable proportion (60%) of paediatric patients in the Melbourne and Sydney clinics are able to understand some open set speech using electrical stimulation alone. These results, and the upward trend of speech perception benefits to improve over time with advances in speech processing. have raised questions as to whether severely, or severely-to-profoundly deaf children currently using hearing aids would in fact benefit more from a cochlear implant. To investigate the potential effect of the level of preoperative residual hearing on postoperative speech perception. results for all implanted children in the Melbourne and Sydney cochlear implant programs were analysed. Results showed that as 8 group, children with higher levels of preoperative residual hearing were consistently more likely to achieve open-set speech perception benefits. Potential factors in this finding could be higher levels of ganglion cell survival or greater patterning of the auditory pathways using conventional hearing aids prior to implantation. Conversely, children with the least preoperative residual hearing were less predictable, with some children achieving open-set perception, and others showing more limited closed-set benefits to perception. For these children, it is likely that preoperative residual hearing is of less significance than other factors in outcomes.