Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Lateral inhibition in ventral cochlear nucleus chopper neurons: contribution to coding of a speech feature [Abstract]
    Needham, K. ; Paolini, A. G. ; Clarey, J. C. ; Clark, Graeme M. ( 2002)
    Lateral inhibition in the auditory system enhances excitatory responses by suppressing off-best frequency (BF) neural activity. Previous work has suggested that lateral inhibition activated by high frequency frication noise associated with stop consonant plays a role in coding voice onset time (VOT), the period between consonant release and onset of the ensuing vowel.
  • Item
    Thumbnail Image
    Post-implant habilitation for children using cochlear implants: effects on long-term outcome
    Dowell, Richard C. ; Dettman, Shani J. ; WILLIAMS, SARAH ; TOMOV, ALEXANDRA ; Hollow, Rod ; Clark, Graeme M. ( 2002)
    Most clinicians working in the cochlear implant field advocate a regular habilitation program for young children receiving implants. The development of auditory skills and the incorporation of these skills into language development are thought to be key areas for such programs. Studies of speech perception and language outcomes demonstrate that an educational approach that emphasises spoken language development appears to enhance the results for implanted children. It remains difficult, however, to demonstrate clearly the effect of habilitation objectively and to determine how much individual attention is desirable for each child. This pilot study considered the long term speech perception and language outcomes for two groups of children who received Nucleus cochlear implants in Melbourne. One group (n=17) was identified as receiving regular habilitation from the Melbourne Cochlear Implant Clinic over a four year post-operative period. Another group (n=l1) was identified as receiving very little regular habilitation over the post-operative period. The language and speech perception results for these two groups showed a significant difference in performance on a wide range of measures with the group receiving regular formal habilitation demonstrating better performance on all measures. These groups included only congenitally, profoundly hearing-impaired children and did not differ significantly on mean age at implant or experience at the time of assessment. Further studies are needed to clarify these results on a larger group of children, and to control for additional confounding variables. Nonetheless, these preliminary results provide support for the incorporation of regular long-term habilitation into cochlear implant programs for children.
  • Item
    Thumbnail Image
    Predicting speech perception outcomes for children using multichannel cochlear implants [Abstract]
    Dowell, Richard C. ; Dettman, Shani J. ; WILLIAMS, SARAH ; Hill, Katie ; TOMOV, ALEXANDRA ; Clark, Graeme M. ( 2002)
    The ability to predict outcomes for children who are cochlear implant candidates is most helpful in counselling families and making clinical recommendations. Open-set speech perception results have been collected for all children implanted with the Nucleus device in Melbourne. Speech perception as assessed at six month intervals following implantation. Information wascollected for each child regarding type of hearing loss, duration and age at onset of profound hearing loss, age at implantation, pre and post-implant communication mode, developmental delay, speech coding scheme and implant experience.
  • Item
    Thumbnail Image
    X-ray phase-contrast imaging
    XU, JIN ; Lawrence, D. ; Tykocinski, Michael. ; Duan, Y. Y. ; Saunders, E. ; Clark, Graeme M. ( 2001)
    Foreign language abstract
  • Item
    Thumbnail Image
    The relationship between the output synchrony of cochlear nucleus neurons and the site of stimulation in the cochlea
    Kuhlmann, L. ; Burkitt, A. N. ; Paolini, A. G. ; Clark, Graeme M. ( 2001)
    A model has been developed to determine the relationship between the output synchrony of cochlear nucleus neurons and the site of stimulation in the cochlea. This is an Integrate and Fire Neuron Model in which noisy periodic synaptic inputs to the neuron are summed and a spike is generated when the membrane potential reaches threshold. The model describes the stochastic input that auditory nerve fibres provide to a cochlear nucleus neuron and the corresponding stochastic output. To investigate the relationship between the output synchrony of cochlear nucleus neurons (namely globular bushy cells) and the site of stimulation in the cochlea, phase differences between the periodic inputs of the model were incorporated, in order to mimic how the travelling wave consecutively activates auditory nerve fibres originating over a spatial spread of the basilar membrane. Analysis of the model found that output synchrony decreased with an increase in frequency and spatial spread. Furthermore, enhancement of the output synchrony relative to the input synchrony occurred for small spatial spreads of the basilar membrane over which input primary afferent fibres originate. Adding noise helped to make the model more realistic. As a result enhancement of synchrony occurred with a spatial spread of less than 1.25 mm and 0.75 mm for 0.5 kHz and I kHz respectively, while for the higher frequencies analysed (2 kHz and 5 kHz) enhancement of synchrony did not occur. This research has implications for the design of electrode arrays in cochlear implants. The number and geometry of the electrodes and the stimulus patterns to be used will depend on the degree of convergence of fibres and how phase information is processed by neurons in the brainstem.
  • Item
    Thumbnail Image
    Brainstem encoding of short voice onset times in natural speech
    Clarey, J. C. ; Paolini, A. G. ; Clark, Graeme M. ( 2001)
    An auditory nerve study has shown that short voice onset times (VOTs) in synthetic consonant-vowel syllables are not accurately encoded by the fibres' discharge rate. We have re-examined this issue within the ventral Cochlear nucleus (VCN), using natural speech and a fine-grain analysis of single unit responses. We recorded extracellularly from 93 VCN neurons in rats anaesthetised with urethane (2.5 g/kg ip). After identifying a cell's response type and best frequency (BF), 3 syllables spoken by a male were presented at double rate and 3 intensities (/bεt/, /dεt/, and /gεt/, at 45, 65, and 75 dB SPL). These three syllables differ in their VOTs (the interval between consonant release and the onset of glottal pulses associated with voicing) due to the different points of articulation of the three initial stop consonants. In many neurons (particularly onset cells), these syllables evoked a clear response to consonant release, followed by an interval of inactivity or reduced activity before the periodic response to the vowel's voicing frequency commenced. This interval of reduced or no activity corresponded to a given syllable's VOT. The responses of all cells (BFs: 0.9-19 kHz) to the 9 different syllable-SPL combinations were plotted as Grand Average post-stimulus time histograms. In 8/9 combinations, syllable onset was associated with a statistically significant peak in activity and the next significant peak in discharge rate occurred at the time of voice onset (± I ms). These results indicate that the prominent responses to consonant release and voice onset, produced by the synchronous firing of neurons with a wide range of BFs, accurately encode short VOTs.
  • Item
    Thumbnail Image
    The effects of action potential propagation delay times and an absolute refractory period upon the synchronization index in the integrate and fire neuron model and a comparison with neurons in the auditory pathway
    Kuhlmann, L. ; Burkitt, A. N. ; Clark, Graeme M. ( 2000)
    The effects of action potential (AP) propagation delay times and the absolute refractory period upon the synchronization index are analysed for the integrate and fire neuron model, and the results are compared with recordings from auditory ganglion neurons and cochlear nucleus neurons. In the model the noisy periodic synaptic input to the neuron is summed and an AP is generated when the membrane potential reaches threshold. The output phase distribution (phase histogram) is calculated at the site at which the APs are generated. The AP propagation delay times along an axon are modelled using a periodically wrapped Gaussian distribution, with the width fitted from experimental data. This distribution is convolved with the calculated phase distribution to obtain the phase distribution at the axon terminal.
  • Item
    Thumbnail Image
    The effect of rate of stimulation of the auditory nerve on phoneme recognition
    Grayden, David B. ; Clark, Graeme M. (Australian Speech Science and Technology Association, 2000)
    Five patients implanted with the Nucleus CI-24M cochlear implant were tested on consonant and vowel perception with three different average rates of stimulation: 250 pulses/s per channel, 807 pps/ch and 1615 pps/ch. There were no significant differences in phoneme recognition scores when learning effects were taken into account. Information transmission analysesof consonant confusion matrices revealed that, with higher rates of stimulation, manner of articulation features were better perceived but place of articulation features were more poorlyperceived. The results and analyses suggest that high rates of stimulation provide improved information about temporal information and frication in speech, but mask the spectral detail required for the perception of place of articulation.
  • Item
    Thumbnail Image
    Delay analysis in an investigation of auditory temporal coding
    FitzGerald, John V. ; Paolini, A. G. ; Burkitt, A. N. ; Clark, Graeme M. ( 2000)
    Delay analysis is a method for analysing phase-locked responses to periodic stimuli which is widely used in the study of auditory cells, as it provides an estimate of the delay present in a system from steady-state data. While the usual formulation utilises the assumption that the delay is constant across frequencies, in the auditory system delay varies with frequency. In this paper two new formulations of delay analysis are introduced, and are applied to the analysis of auditory temporal coding. In rats anaesthetised with urethane (1.3g/kg i.p.), in vivo extracellular recordings were made in the auditory nerve, cochlear nucleus and trapezoid body using glass microelectrodes filled with 1M potassium acetate (50-70MΩ).
  • Item
    Thumbnail Image
    Latest results for adults & children using cochlear implants & future implications
    Cowan, Robert C. ; Clark, Graeme M. ; Dowell, Richard C. ; Dettman, Shani J ; Barker, Elizabeth ; Latus, Katie ; Hollow, Rod ; Blamey, Peter J. ( 2000)
    The overall success of a cochlear implant procedure is most often quantified by assessing how well implantees can understand speech. This is because a primary aim of the application of cochlear implants is to improve communication, and it is relatively straightforward to obtain accurate measures of speech recognition. The quality of cochlear implant hearing is not well described by measuring an audiogram, as the detection of sound is similar across all implantees if the device is functioning correctly. A commonly used measure of speech understanding is the CID everyday sentence test where the number of correctly identified words within sentences is assessed. In the early days of cochlear implants, subjects could only recognize a few words without lipreading but the most recent results show average scores of 80% without lipreading for this sentence test, after 6 months of experience with the device.