Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    A speech processing strategy for multiple-electrode cochlear implant prostheses
    Tong, Y. C. ; Clark, Graeme M. (Monash University Press, 1983)
    Speech studies in a number of research centres have shown that useful speech information could be presented to deaf patients using single or multiple electrode cochlear implant prostheses (Parking & Anderson, 1983). In our laboratory, speech processing strategies were formulated on the basis of psychophysical results. This paper examines the psychophysical characteristics of the hearing sensations produced by electrical stimulation using scala tympani electrodes in postlingually deaf patients; a speech processing strategy is then discussed on the basis of these characteristics.
  • Item
    Thumbnail Image
    Selection of speech processing for cochlear implant prostheses
    Millar, J. B. ; Tong, Y. C. ; Clark, Graeme M. (Monash University Press, 1983)
    In this paper we consider a framework against which to discuss strategies for the design of speech processors for cochlear implant prostheses. We hope to encourage discussion of the bases for such a framework even though it may seem a distant objective owing to the large gaps in our understanding of several component parts of cochlear implant systems. The existence of such a framework would provide a background against which to view the current diverse cochlear implant systems and to evaluate their performance.
  • Item
    Thumbnail Image
    The implanted round window membrane in the cat [Abstract]
    Franz, B. ; Clark, Graeme M. ; Ng, J. ; Bloom, D. (Monash University Press, 1983)
    In cochlear implants the round window is convenient for the electrode insertion into the scala tympani because the surgical approach is reasonably easy and the inserted electrode lies close to systematically organised nerve fibres in the spiral lamina. However, complications might occur when a poor seal, extensive tissue damage or surgical asepsis are present that lead to a reduction in the nerve fibre population which is needed for electrical stimulation. Published articles available do not describe the role of the window membrane in cochlear implants. Probably this can be referred to the finidng of abundant scar tissue in the window niche and around the electrode giving the impression of a safely implanted electrode. This study performed on seven cats over 5 months was concerned with morphological properties of the implanted window membrane at different stages after implantation. In addition, horseradishperoxydase was used as a tracersubstance to give data concerning the sealing properties of the implanted round window membrane.
  • Item
    Thumbnail Image
    Initial results for six patients with a multiple-channel cochlear prosthesis
    Dowell, R. C. ; Brown, A. M. ; Seligman, P. M. ; Clark, Graeme M. (Monash University Press, 1983)
    A total of eight patients have been assessed with the multi-channel cochlear prosthesis at the University of Melbourne. The first two patients were implanted with a prototype device in 1978 and 1979, and their results with various speech evaluation procedures have been reported and summarized in detail elsewhere (Clark & Tong, 1982). Briefly, these results indicated that some very significant benefit could be obtained for these patients when using the cochlear prosthesis with external speech processing, particularly when using the device in conjunction with lipreading. It was also shown that some significant understanding of speech was possible without lipreading (open-set) for both patients, although this was fairly limited.
  • Item
    Thumbnail Image
    The auditory brainstem response in hearing and deaf cats evoked by intracochlear electrical stimulation
    Black, R. C. ; Clark, Graeme M. ; O'Leary, S. J. ; Walters, C. (Monash University Press, 1983)
    This study was performed to investigate in detail the auditory brainstem response (ABR) for intracochlear electrical stimulation. Brainstem response audiometry is a simple, noninvasive procedure with the responses under many stimulus conditions being readily understood in terms of single auditory nerve discharge properties. The amplitude and latency behaviour of the Nl brainstem response correlates well with that recorded directly from the auditory nerve (Huang & Buchwald, 1978). In addition, the brainstem response can be divided into frequency-specific components corresponding to tonotopical locations in the cochlea, as exhibited in the method of derived responses (e.g. Parker &Thornton, 1978). It is therefore well suited to both physiological and clinical investigation of auditory function and therefore should be useful in evaluating auditory function under conditions of electrical stimulation of the cochlea.
  • Item
    Thumbnail Image
    Electrical stimulation of the human cochlea: psychophysical and speech studies
    Clark, Graeme M. (Plenum Publishing Corporation, 1981)
    This report describes psychophysical and speech studies conducted on two of our post-lingually deaf patients implanted with the nature of the hearing sensations produced by the individual electrodes, and to investigate the feasibility of the transmission of speech information to higher centres by means of cadences of stimulation using on electrode at a time. Two totally deaf patients (MC1 and MC2) participated in these studies.
  • Item
    Thumbnail Image
    Advances with the 22-channel cochlear implant
    Hirshorn, Michael S. ; Clark, Graeme M. ; Mecklenburg, Dianne J. (Kugler & Ghedini, 1988)
    The Nucleus 22 Channel Cochlear Implant was developed on the basis of work at the University of Melbourne. Between 1967 and 1978, there was extensive research with animals and human temporal bones, especially regarding safety, psychophysics, histopathology and surgical approaches. As a result of this work, it was decided to develop a multi-channel intracochlear implant. The 22 channel implant has been used in more than 500 patients world-wide but there were many steps on the road to this success. Today, over one third of the post-lingually profound, deaf adults implanted with this device have significant speech understanding without lipreading.
  • Item
    Thumbnail Image
    Surgery for multielectrode cochlear implants
    Lehnhardt, E. ; Laszig, R. ; Webb, H. ; Franz, B. ; Pyman, B. ; Clark, Graeme M. ( 1987)
    For the surgery of the NUCLEUS Cochlear Implant (CI) in general anaesthesia we use a skin cut beginning at the bottom of the entrance to the outer ear canal, following the posterior circumference to a point nearly 12 o'clock. From here the incision runs superiorly to the tragus until two or three centimetres above the pinna base and in a wide smooth circle in direction to the occiput. The wide circle is necessary to get a distance of about 2 cm away from the package and also to guarantee the blood supply by the occipital artery and by the postauricular artery as well.
  • Item
    Thumbnail Image
    Signal processing in quiet and noise
    Dowell, R. C. ; Patrick, J. F. ; Blamey, P. J. ; Seligman, P. M. ; Money, D. K. ; Clark, Graeme M. ( 1987)
    It has been shown that many profoundly deaf patients using multichannel cochlear implants are able to understand significant amounts of conversational speech using the prosthesis without the aid of lipreading. These results are usually obtained under ideal acoustic conditions but, unfortunately, the environments in which the prostheses are most often used are rarely perfect. Some form of competing signal is always present in the urban setting, from other conversations, radio and television, appliances, traffic noise and so on. As might be expected, implant users in general find background noise to be the largest detrimental factor in their understanding of speech, both with and without the aid of lipreading. Recently, some assessment of implant patient performance with competing noise has been attempted using a four-alternative forced-choice spondee test (1) at Iowa University. Similar testing has been carried out at the University of Melbourne with a group of patients using the Nucleus multichannel cochlear prosthesis. This study formed part of an assessment of a two formant (F0/FI/F2) speech coding strategy (2). Results suggested that the new scheme provided improved speech recognition both in quiet and with competing noise. This paper reports on some more detailed investigations into the effects of background noise on speech recognition for multichannel cochlear implant users.
  • Item
    Thumbnail Image
    The histopathology of the human temporal bone following cochlear implantation in a patient: a summary
    Clark, Graeme M. ; Shepherd, R. K. ; Webb, R. L. ; Franz, B. K-H. ( 1987)
    The macroscopic and microscopic evaluation of the implanted and unimplanted temporal bones in a patient who had a cochlear prosthesis for 27 months prior to his death from cardiac disease has shown that the device is biocompatible, and does not lead to any significant adverse effects. The cause of deafness was meningitis.