Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Two-component hearing sensations produced by two-electrode stimulation in the cochlear of a deaf patient
    Tong, Y. C. ; Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1983)
    http://www.sciencemag.org/cgi/content/abstract/219/4587/993?ijkey=v6jEOhdpzPCxw&keytype=ref&siteid=sci
  • Item
    Thumbnail Image
    The histopathological effects of chronic electrical stimulation of the cat cochlea
    Shepherd, R. K. ; Clark, Graeme M. ; Black, R. C. ; Patrick, J. F. (Cambridge University Press, 1983)
    The success of a cochlear implant depends on stimulating an adequate number of viable spiral ganglion cells. The effect of chronic electrical stimulation on ganglion cells is therefore an important consideration when assessing the effectiveness and safety of such a device. The histopathological assessment of chronic unstimulated intracochlear electrodes is now well documented (Simmons, 1967; Clark, 1973; Clark et al, 1975; Schindler and Merzenich, 1974; Schindler, 1976; Schindler et al, 1977; Sutton et al, 1980). These experimental studies have used a variety of electrode designs, materials and surgical techniques. However, all have shown that chronic implantation has little effect on the peripheral nerves and the spiral ganglion cells adjacent to an implant, provided the insertion procedure is free of trauma and infection.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve in cats: physiological and histopathological results
    Shepherd, R. K. ; Clark, Graeme M. ; Black, R. C. ( 1983)
    The ability of spiral ganglion cells to survive long-term electrical stimulation is a precondition for the success of cochlear prostheses. In this study 10 cats were implanted bilaterally with bipolar scala tympani electrodes and stimulated for periods of up to 2029 hours using charge balanced biphasic current pulses. The status of the auditory nerve was monitored periodically by recording electrically evoked auditory brainstem responses. At the conclusion of the stimulation program, spiral ganglion cell survival was assessed for stimulated and control cochleas; comparison of the two groups showed no statistically significant difference. The results of this study indicate that long-term intracochlear electrical stimulation using carefully controlled biphasic pulses does not adversely affect the spiral ganglion cell population.
  • Item
    Thumbnail Image
    Clinical trial of a multiple-channel cochlear prosthesis: an initial study in four patients with profound total hearing loss
    Bailey, Quentin R. ; Seligman, Peter M. ; Tong, Yit. C. ; Clark, Graeme M. ; Dowell, R. C. ; Brown, Alison M. ; Luscombe, Susan M. ; Pyman, Brian C. ; Webb, Robert L. ( 1983)
    The clinical trial of a multiple-channel cochlear prosthesis was undertaken in four patients with postlingual deafness and profound total hearing loss. The results of open-set speech tests confirmed that, using electrical stimulation alone, one patient could have a meaningful conversation with resorting to lipreading (for example, this patient uses the prosthesis to converse with her husband on the telephone). The results of closed-set speech tests also suggested that a multiple-channel stimulator is more effective than a single-channel one in conveying speech information. The cochlear prosthesis was especially effective in all four patients when it was used in conjunction with lipreading, and speech-tracking tests showed that the patients could combine the information obtained from both electrical stimulation and lipreading.
  • Item
    Thumbnail Image
    Current distributions in cochlear stimulation
    Black, R. C. ; Clark, Graeme M. ; Tong, Y. C. ; Patrick, J. F. ( 1983)
    The success of a multiple-channel cochlear implant depends, in part, on localizing the electrical current to discrete groups of auditory nerve fibers. A number of studies are described that were performed to investigate this issue. First, a three-dimensional resistance model of the normal cat cochlea was developed to examine general properties of electrically stimulating the cochlea. The distribution of the excited nerve fibers for monopolar and bipolar stimulation of the cat scala tympani were then determined. In addition certain measurements of the current distribution within the human cochlea for a pseudobipolar electrode array were performed. Finally, measurements were made in saline-solution-filled tube models of current distributions for bipolar and pseudobipolar stimulation, with both single-electrode and coincident multi-electrode stimulation. (From Introduction)
  • Item
    Thumbnail Image
    Intracochlear electrical simulation of normal and deaf cats investigated using brainstem response audiometry
    Black, R. C. ; Clark, Graeme M. ; O'Leary, S. J. ; Walters, C. ( 1983)
    Brainstem response audiometry for intracochlear electrical stimulation of normal-hearing and deafened cats was investigated. In normal cochleas the brainstem response amplitude grew slowly near threshold as a current-amplitude dependent process, identified as electrophonic in origin. This terminated in a rapidly growing charge-dependent process at approximately 20 dB above threshold, identified as direct electrical stimulation of the auditory nerve. Small levels of white noise (25-35 dB SPL) were sufficient to mask most of the electrophonic response, leaving the direct stimulation process essentially unmodified. In cochleas damaged with d.c. currents and loud sounds, only a rapidly growing charge-dependent process was observed which grew similarly to that in normal-hearing cats but occurred at lower currents. This indicates that possibly the electrical properties of the cochlea were altered in the deafening process, suggesting the inadequacy of normal animals as deaf models for electrical stimulation. Using the technique of derived brainstem responses, it was shown that direct electrical stimulus components were localized to the vicinity of the stimulus electrode with electrophonic components distributed more widely. However, at high currents there was some evidence of the stimulus spreading into the internal auditory meatus.